Suppr超能文献

新出现的关注污染物的微生物降解:增强生物修复的代谢、遗传和组学见解

Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation.

作者信息

Shah Bhavik A, Malhotra Harshit, Papade Sandesh E, Dhamale Tushar, Ingale Omkar P, Kasarlawar Sravanti T, Phale Prashant S

机构信息

Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.

出版信息

Front Bioeng Biotechnol. 2024 Sep 19;12:1470522. doi: 10.3389/fbioe.2024.1470522. eCollection 2024.

Abstract

The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication ., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.

摘要

天然/合成污染物持续不断地释放到环境中,对生态平衡和人类健康构成了重大风险。其中,新出现的环境关注污染物(CECs)的特点是最近才在各种环境中被引入/检测到,从而造成重大危害,因此需要对其进行清除。药物、增塑剂、蓝藻毒素和新型农药是CECs的主要类别,它们毒性极高,且在生物圈的各个部分均有发现。这些化合物的来源可能是多方面的,包括工业排放、不当处置、未代谢残留物的排泄、富营养化等,而它们的归宿和持久性则由物理化学性质、环境条件、生物降解性和水文因素等决定。这些化合物与微生物群的接触导致了选择压力,并促使代谢途径发生进化,以实现对它们的生物转化和/或将其用作唯一的碳源和能源。这种微生物降解表型可用于从环境中清除CECs,为非生物去除方法提供了一种经济高效且环保的替代方案,从而降低它们的毒性。然而,生物修复策略的高效生物工艺开发需要深入了解各个组成部分,如途径基因簇、蛋白质/酶、代谢物和相关调控机制。“组学”和“宏组学”技术有助于深入了解这些组成部分以及微生物群落的复杂相互作用和功能,从而实现更有效、更有针对性的生物修复。除了天然分离株外,代谢工程方法还应用基因工程来提高代谢多样性和降解速率。组学数据的整合将进一步有助于制定系统层面的生物修复和代谢工程策略,从而优化清理过程。本综述描述了细菌对四类主要CECs(药物、增塑剂、蓝藻毒素和新型农药)进行生物修复的分解代谢途径、遗传学以及组学和代谢工程的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/725f/11446756/536a534552ba/fbioe-12-1470522-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验