Suppr超能文献

sp. CS-1对头孢噻呋钠的生物降解机制评估及转录组学分析见解

Assessment of Biodegradation Mechanisms of Ceftiofur Sodium by sp. CS-1 and Insights from Transcriptomic Analysis.

作者信息

Yan Meng-Yang, Zhao Cai-Hong, Wu Jie, Mohammad Adil, Li Yi-Tao, Liu Liang-Bo, Cao Yi-Bo, Deng Xing-Mei, Guo Jia, Zhang Hui, He Hong-Su, Sun Zhi-Hua

机构信息

State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.

Development Service Center for Livestock and Aquatic Products of Shihezi City, Shihezi 832000, China.

出版信息

Microorganisms. 2025 Jun 16;13(6):1404. doi: 10.3390/microorganisms13061404.

Abstract

Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). This situation poses substantial challenges to both environmental integrity and public health. Currently, research on the biodegradation of CFS is limited. In this study, we isolated a strain of , designated CS-1, a Gram-negative, rod-shaped bacterium capable of utilizing CFS as its sole carbon source, from fecal samples collected from hog farms. We investigated the effects of initial CFS concentration, pH, temperature, and inoculum size on the degradation of CFS by CS-1 through a series of single-factor experiments conducted under aerobic conditions. The results indicated that CS-1 achieved the highest CFS degradation rate under the following optimal conditions: an initial CFS concentration of 50 mg/L, a pH of 7.0, a temperature of 37 °C, and an inoculum size of 6% (volume fraction). Under these conditions, CS-1 was able to completely degrade CFS within 60 h. Additionally, CS-1 exhibited significant capabilities for CFS degradation. In this study, six major degradation products of (CFS) were identified by UPLC-MS/MS: desfuroyl ceftiofur, 5-hydroxymethyl-2-furaldehyde, 7-aminodesacetoxycephalosporanic acid, 5-hydroxy-2-furoic acid, 2-furoic acid, and CEF-aldehyde. Based on these findings, two degradation pathways are proposed. Pathway I: CFS is hydrolyzed to break the sulfur-carbon (S-C) bond, generating two products. These products undergo subsequent hydrolysis and redox reactions for gradual transformation. Pathway II: The β-lactam bond of CFS is enzymatically cleaved, forming CEF-aldehyde as the primary degradation product, which is consistent with the biodegradation mechanism of most β-lactam antibiotics via β-lactam ring cleavage. Transcriptome sequencing revealed that 758 genes essential for degradation were upregulated in response to the hydrolysis and redox processes associated with CFS. Furthermore, the differentially expressed genes (DEGs) of CS-1 were functionally annotated using a combination of genomics and bioinformatics approaches. This study highlights the potential of CS-1 to degrade CFS in the environment and proposes hypotheses regarding the possible biodegradation mechanisms of CFS for future research.

摘要

头孢噻呋钠(CFS)是一种在临床中具有重要意义的头孢菌素,广泛应用于畜禽养殖业。然而,未被动物吸收的CFS会随粪便排出,进入环境,促使抗生素抗性细菌(ARB)和抗生素抗性基因(ARGs)的出现。这种情况对环境完整性和公众健康都构成了重大挑战。目前,关于CFS生物降解的研究有限。在本研究中,我们从猪场采集的粪便样本中分离出一株革兰氏阴性、杆状细菌,命名为CS - 1,它能够利用CFS作为唯一碳源。我们通过在有氧条件下进行的一系列单因素实验,研究了初始CFS浓度、pH值、温度和接种量对CS - 1降解CFS的影响。结果表明,在以下最佳条件下CS - 1实现了最高的CFS降解率:初始CFS浓度为50 mg/L、pH值为7.0、温度为37℃、接种量为6%(体积分数)。在这些条件下,CS - 1能够在60小时内完全降解CFS。此外,CS - 1表现出显著的CFS降解能力。在本研究中,通过超高效液相色谱 - 串联质谱(UPLC - MS/MS)鉴定出CFS的六种主要降解产物:去呋喃甲酰头孢噻呋、5 - 羟甲基 - 2 - 糠醛、7 - 氨基去乙酰氧基头孢烷酸、5 - 羟基 - 2 - 呋喃甲酸、2 - 呋喃甲酸和头孢噻呋醛。基于这些发现,提出了两条降解途径。途径I:CFS水解以断裂硫 - 碳(S - C)键,产生两种产物。这些产物随后经历水解和氧化还原反应进行逐步转化。途径II:CFS的β - 内酰胺键被酶促裂解,形成头孢噻呋醛作为主要降解产物,这与大多数β - 内酰胺抗生素通过β - 内酰胺环裂解的生物降解机制一致。转录组测序显示,758个对降解至关重要的基因因与CFS相关的水解和氧化还原过程而上调。此外,使用基因组学和生物信息学方法相结合对CS - 1的差异表达基因(DEGs)进行了功能注释。本研究突出了CS - 1在环境中降解CFS的潜力,并提出了关于CFS可能的生物降解机制的假设以供未来研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/023b/12195661/33be93c1a8a1/microorganisms-13-01404-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验