Groß Heiko, Heil Hannah S, Ehrig Jens, Schwarz Friedrich W, Hecht Bert, Diez Stefan
Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Würzburg, Germany.
B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
Nat Nanotechnol. 2018 Aug;13(8):691-695. doi: 10.1038/s41565-018-0123-1. Epub 2018 Apr 30.
In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude. Control of such near-field light-matter interaction is essential for applications in biosensing, light harvesting and quantum communication and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates. However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.
在金属纳米结构附近,光发射器的吸收和发射速率可被调制几个数量级。控制这种近场光与物质的相互作用对于生物传感、光捕获和量子通信应用至关重要,并且需要对光学近场相互作用进行精确映射,单发射器探针是很有前景的候选者。然而,目前可用的技术在通量、分辨率和/或非侵入性方面存在局限性。在此,我们提出一种方法,利用表面结合的运动蛋白来运输携带单发射器(量子点)的微管,以<5纳米的分辨率对光学近场相互作用进行并行映射。量子点的确定性运动允许对其跟踪位置进行插值,从而提高空间分辨率并抑制定位伪影。我们应用此方法绘制刻在金层上的纳米狭缝的近场分布,并发现与有限时域差分模拟结果非常吻合。我们的技术可以很容易地应用于各种表面,使用传统的宽场显微镜进行可扩展的、纳米级分辨率且无伪影的近场映射。