Optical Materials Engineering Laboratory and ‡Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich , 8092 Zurich, Switzerland.
Nano Lett. 2014 Oct 8;14(10):5827-33. doi: 10.1021/nl5026997. Epub 2014 Sep 5.
Colloidal quantum-dots are bright, tunable emitters that are ideal for studying near-field quantum-optical interactions. However, their colloidal nature has hindered their facile and precise placement at desired near-field positions, particularly on the structured substrates prevalent in plasmonics. Here, we use high-resolution electro-hydrodynamic printing (<100 nm feature size) to deposit countable numbers of quantum dots on both flat and structured substrates with a few nanometer precision. We also demonstrate that the autofocusing capability of the printing method enables placement of quantum dots preferentially at plasmonic hot spots. We exploit this control and design diffraction-limited photonic and plasmonic sources with arbitrary wavelength, shape, and intensity. We show that simple far-field illumination can excite these near-field sources and generate fundamental plasmonic wave-patterns (plane and spherical waves). The ability to tailor subdiffraction sources of plasmons with quantum dots provides a complementary technique to traditional scattering approaches, offering new capabilities for nanophotonics.
胶体量子点是明亮、可调谐的发射器,非常适合研究近场量子光学相互作用。然而,它们的胶体性质阻碍了它们在期望的近场位置的简便和精确放置,特别是在等离子体中常见的结构化衬底上。在这里,我们使用高分辨率电动力学印刷(<100nm 特征尺寸)以纳米级精度将可数数量的量子点沉积在平坦和结构化衬底上。我们还证明了该印刷方法的自动聚焦能力可使量子点优先放置在等离子体热点处。我们利用这种控制和设计具有任意波长、形状和强度的衍射受限光子和等离子体源。我们表明,简单的远场照明可以激发这些近场光源并产生基本的等离子体波模式(平面波和球面波)。用量子点定制亚衍射等离子体源的能力为传统散射方法提供了一种补充技术,为纳米光子学提供了新的功能。