Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba, S/N, San Nicolás de los Garza, Nuevo León, México.
Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, México.
Int J Nanomedicine. 2018 Apr 17;13:2349-2363. doi: 10.2147/IJN.S160605. eCollection 2018.
One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells.
In this study, we report a green one-pot synthesis method that uses extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo.
The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet-visible, and Fourier transform infrared.
We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative (, , and a clinical multidrug-resistant strain of ) and Gram-positive () bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the results demonstrate that Ag-NPs can be used safely as therapeutic agents in animal models.
Together, these results suggest the potential use of Ag-NPs, synthesized by green chemistry methods, as therapeutic agents against infections caused by resistant and nonresistant strains.
在医学领域和临床实践中,一个主要问题是开发针对抗生素耐药菌感染的新型有效治疗方法。开发有效抗菌剂的一个途径是使用银纳米粒子(Ag-NPs),因为它们已被发现具有高效广谱的抗菌特性。使用 Ag-NPs 的主要缺点之一是它们对真核细胞可能具有细胞毒性,并且其合成方法存在潜在的环境毒性。因此,涉及使用环保植物提取物作为还原剂和封端剂的各种绿色合成方法,已成为合成对真核细胞毒性阈值以下的耐药细菌具有抗菌作用的 Ag-NPs 的有吸引力的方法。
在这项研究中,我们报告了一种绿色一锅合成方法,该方法使用 提取物作为还原剂和封端剂,以生产具有治疗感染体内应用的治疗剂的 Ag-NPs。
使用透射电子显微镜(TEM)、高分辨率 TEM、选区电子衍射、能谱、紫外-可见和傅里叶变换红外对 Ag-NPs 进行了表征。
我们表明,Ag-NPs 呈球形,具有较窄的尺寸分布。Ag-NPs 在体外对革兰氏阴性( 、 和一种临床多药耐药的菌株)和革兰氏阳性( )细菌具有抗菌活性。此外,还在小鼠皮肤感染模型中测试了 Ag-NPs 对耐药 临床株的抗菌作用。结果表明,本工作中报道的 Ag-NPs 能够在体内感染中消除致病性耐药菌。此外,在小鼠感染模型中监测了皮肤、肝脏和肾脏损伤谱,结果表明 Ag-NPs 可安全用作治疗剂在动物模型中。
综上所述,这些结果表明,通过绿色化学方法合成的 Ag-NPs 可作为治疗针对耐药和非耐药菌株引起的感染的治疗剂。