Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6th floor, Burma colony, Karaikudi 630004, Tamil Nadu, India.
Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6th floor, Burma colony, Karaikudi 630004, Tamil Nadu, India.
Microb Pathog. 2018 Feb;115:31-40. doi: 10.1016/j.micpath.2017.12.003. Epub 2017 Dec 5.
The present study reports the biological synthesis of silver nanoparticles using crustacean immune molecule β-1, 3 glucan binding protein (β-GBP) purified from the haemolymph of blue swimmer crab Portunus pelagicus. The characterization of synthesized β-GBP based silver nanoparticles (Ppβ-GBP-AgNPs) was made by UV-Vis spectroscopy, XRD, FTIR and TEM analysis. UV-Vis spectra recorded the strong absorbance peak at 420 nm due to its surface plasmon resonance. The XRD analysis revealed the crystalline nature of synthesized nanoparticles with Bragg's reflection peaks at (111), (200), (220), (311) planes. FTIR analysis showed the possible functional groups at 3422, 2926, 2847, 1648, 1556, 1407, 1016 and 669 cm. The mean particle size of Ppβ-GBP-AgNPs was 33-47 nm revealed by TEM analysis. Ppβ-GBP-AgNPs exhibit appreciable antibacterial activity against Enterococcus faecalis and Pseudomonas aeruginosa when compared to chemical based AgNPs (Chem-AgNPs). The antibiofilm property of Ppβ-GBP-AgNPs was assessed through light microscopy and confocal laser scanning microscopy analysis (CLSM), which clearly demonstrates, thickness of E. faecalis and P. aeruginosa preformed biofilm was reduced to 11 μm & 8 μm from 47 μm & 45 μm respectively. Moreover, exopolysaccharide (EPS) quantification and cell surface hydrophobicity (CSH) index exhibited that, Ppβ-GBP-AgNPs had the potential to disturb structural integrity of biofilm by upset EPS matrix and bacterial adhesion to hydrocarbons. In addition, the cytotoxic effect of Ppβ-GBP-AgNPs was evaluated against human cervical cancer cells (HeLa). Ppβ-GBP-AgNPs effectively inhibit the viability of HeLa cells at 50 μg/ml concentration and the morphological changes in Ppβ-GBP-AgNPs treated HeLa cells were observed under phase contrast microscopy.
本研究报告了使用从蓝蟹(Portunus pelagicus)血淋巴中纯化的甲壳类动物免疫分子β-1,3 葡聚糖结合蛋白(β-GBP)合成银纳米粒子(AgNPs)的生物合成方法。通过紫外可见光谱、XRD、FTIR 和 TEM 分析对合成的基于β-GBP 的银纳米粒子(Ppβ-GBP-AgNPs)进行了表征。紫外可见光谱记录了由于表面等离子体共振而在 420nm 处的强吸收峰。XRD 分析表明合成的纳米粒子具有晶态,布拉格反射峰位于(111)、(200)、(220)、(311)平面。FTIR 分析显示可能的功能基团在 3422、2926、2847、1648、1556、1407、1016 和 669cm 处。TEM 分析显示 Ppβ-GBP-AgNPs 的平均粒径为 33-47nm。与化学合成的 AgNPs(Chem-AgNPs)相比,Ppβ-GBP-AgNPs 对粪肠球菌和铜绿假单胞菌表现出相当大的抗菌活性。通过荧光显微镜和共焦激光扫描显微镜分析(CLSM)评估了 Ppβ-GBP-AgNPs 的抗生物膜特性,这清楚地表明,粪肠球菌和铜绿假单胞菌形成的生物膜厚度分别从 47μm 和 45μm 减少到 11μm 和 8μm。此外,胞外多糖(EPS)定量和细胞表面疏水性(CSH)指数表明,Ppβ-GBP-AgNPs 有可能通过破坏 EPS 基质和细菌对碳氢化合物的粘附来干扰生物膜的结构完整性。此外,还评估了 Ppβ-GBP-AgNPs 对人宫颈癌(HeLa)细胞的细胞毒性作用。Ppβ-GBP-AgNPs 在 50μg/ml 浓度下有效抑制 HeLa 细胞的活力,并用相差显微镜观察到 Ppβ-GBP-AgNPs 处理的 HeLa 细胞的形态变化。