Suppr超能文献

利用空间光干涉显微镜(SLIM)对乳腺组织进行无标记定量评估。

Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM).

机构信息

Quantitative Light Imaging (QLI) Lab, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana Champaign, 405 N Matthews, Urbana, IL 61801, USA.

Department of Pathology, University of Illinois at Chicago, 840 South Wood Street, Suite 130 CSN, Chicago, IL 60612, USA.

出版信息

Sci Rep. 2018 May 2;8(1):6875. doi: 10.1038/s41598-018-25261-7.

Abstract

Breast cancer is the most common type of cancer among women worldwide. The standard histopathology of breast tissue, the primary means of disease diagnosis, involves manual microscopic examination of stained tissue by a pathologist. Because this method relies on qualitative information, it can result in inter-observer variation. Furthermore, for difficult cases the pathologist often needs additional markers of malignancy to help in making a diagnosis, a need that can potentially be met by novel microscopy methods. We present a quantitative method for label-free breast tissue evaluation using Spatial Light Interference Microscopy (SLIM). By extracting tissue markers of malignancy based on the nanostructure revealed by the optical path-length, our method provides an objective, label-free and potentially automatable method for breast histopathology. We demonstrated our method by imaging a tissue microarray consisting of 68 different subjects -34 with malignant and 34 with benign tissues. Three-fold cross validation results showed a sensitivity of 94% and specificity of 85% for detecting cancer. Our disease signatures represent intrinsic physical attributes of the sample, independent of staining quality, facilitating classification through machine learning packages since our images do not vary from scan to scan or instrument to instrument.

摘要

乳腺癌是全世界女性最常见的癌症类型。乳腺组织的标准组织病理学是疾病诊断的主要手段,包括病理学家对染色组织进行手动显微镜检查。由于这种方法依赖于定性信息,因此可能会导致观察者之间的差异。此外,对于困难的病例,病理学家通常需要额外的恶性肿瘤标志物来帮助诊断,而新型显微镜方法可能能够满足这一需求。我们提出了一种使用空间光干涉显微镜 (SLIM) 对无标签的乳腺组织进行评估的定量方法。通过根据光程揭示的纳米结构提取恶性组织标志物,我们的方法为乳腺组织病理学提供了一种客观、无标签且具有潜在自动化能力的方法。我们通过对由 68 个不同对象组成的组织微阵列进行成像来证明我们的方法,其中 34 个为恶性组织,34 个为良性组织。三折交叉验证结果表明,检测癌症的敏感性为 94%,特异性为 85%。我们的疾病特征代表了样本的固有物理属性,与染色质量无关,通过机器学习软件包进行分类变得更加容易,因为我们的图像不会因扫描或仪器而异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验