Zhang Jingfang Kelly, He Yuchen, Sobh Nahil, Popescu Gabriel
Quantitative Light Imaging Laboratory, University of Illinois at Urbana-Champaign, 405 N. Matthews Avenue, Urbana, IL 61801, USA.
Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Avenue, Urbana, IL 61801, USA.
APL Photonics. 2020 Apr;5(4). doi: 10.1063/5.0004723. Epub 2020 Apr 28.
Current pathology workflow involves staining of thin tissue slices, which otherwise would be transparent, followed by manual investigation under the microscope by a trained pathologist. While the hematoxylin and eosin (H&E) stain is well-established and a cost-effective method for visualizing histology slides, its color variability across preparations and subjectivity across clinicians remain unaddressed challenges. To mitigate these challenges, recently we have demonstrated that spatial light interference microscopy (SLIM) can provide a path to intrinsic, objective markers, that are independent of preparation and human bias. Additionally, the sensitivity of SLIM to collagen fibers yields information relevant to patient outcome, which is not available in H&E. Here, we show that deep learning and SLIM can form a powerful combination for screening applications: training on 1,660 SLIM images of colon glands and validating on 144 glands, we obtained a benign vs. cancer classification accuracy of 99%. We envision that the SLIM whole slide scanner presented here paired with artificial intelligence algorithms may prove valuable as a pre-screening method, economizing the clinician's time and effort.
当前的病理学工作流程包括对原本透明的薄组织切片进行染色,然后由训练有素的病理学家在显微镜下进行人工检查。苏木精和伊红(H&E)染色是一种成熟且经济高效的组织学切片可视化方法,但其在不同制剂间的颜色变异性以及临床医生之间的主观性仍是尚未解决的挑战。为了应对这些挑战,最近我们证明了空间光干涉显微镜(SLIM)能够提供一条通向内在、客观标志物的途径,这些标志物独立于制剂和人为偏差。此外,SLIM对胶原纤维的敏感性产生了与患者预后相关的信息,而这在H&E染色中是无法获得的。在这里,我们表明深度学习和SLIM可以形成一个强大的组合用于筛查应用:在1660张结肠腺的SLIM图像上进行训练,并在144个腺体上进行验证,我们获得了99%的良性与癌症分类准确率。我们设想,这里展示的SLIM全切片扫描仪与人工智能算法相结合,可能作为一种预筛查方法被证明是有价值的,从而节省临床医生的时间和精力。