Suppr超能文献

利用全层析成像和虚拟苏木精-伊红染色揭示未标记厚癌组织的三维微观解剖结构。

Revealing 3D microanatomical structures of unlabeled thick cancer tissues using holotomography and virtual H&E staining.

作者信息

Park Juyeon, Shin Su-Jin, Kim Geon, Cho Hyungjoo, Ryu Dongmin, Ahn Daewoong, Heo Ji Eun, Clemenceau Jean R, Barnfather Isabel, Kim Minji, Jang Inyeop, Sung Ji-Youn, Park Jeong Hwan, Min Hyun-Seok, Lee Kwang Suk, Cho Nam Hoon, Hwang Tae Hyun, Park YongKeun

机构信息

Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.

KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea.

出版信息

Nat Commun. 2025 May 22;16(1):4781. doi: 10.1038/s41467-025-59820-0.

Abstract

In histopathology, acquiring subcellular-level three-dimensional (3D) tissue structures efficiently and without damaging the tissues during serial sectioning and staining remains a formidable challenge. We address this by integrating holotomography with deep learning and creating 3D virtual hematoxylin and eosin (H&E) images from label-free thick cancer tissues. This method involves measuring the tissues' 3D refractive index (RI) distribution using holotomography, followed by processing with a deep learning-based image translation framework to produce virtual H&E staining in 3D. Applied to colon cancer tissues up to 50 µm thick-far surpassing conventional slide thickness-this technique provides direct methodological validation through chemical H&E staining. It reveals quantitative 3D microanatomical structures of colon cancer with subcellular resolution. Further validation of our method's repeatability and scalability is demonstrated on gastric cancer samples across different institutional settings. This innovative 3D virtual H&E staining method enhances histopathological efficiency and reliability, marking a significant advancement in extending histopathology to the 3D realm and offering substantial potential for cancer research and diagnostics.

摘要

在组织病理学中,在连续切片和染色过程中高效获取亚细胞水平的三维(3D)组织结构且不损伤组织,仍然是一项艰巨的挑战。我们通过将全层析成像与深度学习相结合,并从无标记的厚癌组织创建3D虚拟苏木精和伊红(H&E)图像来解决这一问题。该方法包括使用全层析成像测量组织的3D折射率(RI)分布,然后用基于深度学习的图像转换框架进行处理,以生成3D虚拟H&E染色。应用于厚度达50μm的结肠癌组织(远远超过传统玻片厚度),该技术通过化学H&E染色提供了直接的方法学验证。它揭示了具有亚细胞分辨率的结肠癌定量3D微观解剖结构。我们方法的可重复性和可扩展性在不同机构环境下的胃癌样本上得到了进一步验证。这种创新的3D虚拟H&E染色方法提高了组织病理学的效率和可靠性,标志着在将组织病理学扩展到3D领域方面取得了重大进展,并为癌症研究和诊断提供了巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d6/12098747/8f6f597f030f/41467_2025_59820_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验