Park Juyeon, Shin Su-Jin, Kim Geon, Cho Hyungjoo, Ryu Dongmin, Ahn Daewoong, Heo Ji Eun, Clemenceau Jean R, Barnfather Isabel, Kim Minji, Jang Inyeop, Sung Ji-Youn, Park Jeong Hwan, Min Hyun-Seok, Lee Kwang Suk, Cho Nam Hoon, Hwang Tae Hyun, Park YongKeun
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
Nat Commun. 2025 May 22;16(1):4781. doi: 10.1038/s41467-025-59820-0.
In histopathology, acquiring subcellular-level three-dimensional (3D) tissue structures efficiently and without damaging the tissues during serial sectioning and staining remains a formidable challenge. We address this by integrating holotomography with deep learning and creating 3D virtual hematoxylin and eosin (H&E) images from label-free thick cancer tissues. This method involves measuring the tissues' 3D refractive index (RI) distribution using holotomography, followed by processing with a deep learning-based image translation framework to produce virtual H&E staining in 3D. Applied to colon cancer tissues up to 50 µm thick-far surpassing conventional slide thickness-this technique provides direct methodological validation through chemical H&E staining. It reveals quantitative 3D microanatomical structures of colon cancer with subcellular resolution. Further validation of our method's repeatability and scalability is demonstrated on gastric cancer samples across different institutional settings. This innovative 3D virtual H&E staining method enhances histopathological efficiency and reliability, marking a significant advancement in extending histopathology to the 3D realm and offering substantial potential for cancer research and diagnostics.
在组织病理学中,在连续切片和染色过程中高效获取亚细胞水平的三维(3D)组织结构且不损伤组织,仍然是一项艰巨的挑战。我们通过将全层析成像与深度学习相结合,并从无标记的厚癌组织创建3D虚拟苏木精和伊红(H&E)图像来解决这一问题。该方法包括使用全层析成像测量组织的3D折射率(RI)分布,然后用基于深度学习的图像转换框架进行处理,以生成3D虚拟H&E染色。应用于厚度达50μm的结肠癌组织(远远超过传统玻片厚度),该技术通过化学H&E染色提供了直接的方法学验证。它揭示了具有亚细胞分辨率的结肠癌定量3D微观解剖结构。我们方法的可重复性和可扩展性在不同机构环境下的胃癌样本上得到了进一步验证。这种创新的3D虚拟H&E染色方法提高了组织病理学的效率和可靠性,标志着在将组织病理学扩展到3D领域方面取得了重大进展,并为癌症研究和诊断提供了巨大潜力。