Epicentre, Paris, France; London School of Hygiene & Tropical Medicine, London, UK.
World Health Organization, Sana'a, Yemen.
Lancet Glob Health. 2018 Jun;6(6):e680-e690. doi: 10.1016/S2214-109X(18)30230-4. Epub 2018 May 3.
In war-torn Yemen, reports of confirmed cholera started in late September, 2016. The disease continues to plague Yemen today in what has become the largest documented cholera epidemic of modern times. We aimed to describe the key epidemiological features of this epidemic, including the drivers of cholera transmission during the outbreak.
The Yemen Health Authorities set up a national cholera surveillance system to collect information on suspected cholera cases presenting at health facilities. Individual variables included symptom onset date, age, severity of dehydration, and rapid diagnostic test result. Suspected cholera cases were confirmed by culture, and a subset of samples had additional phenotypic and genotypic analysis. We first conducted descriptive analyses at national and governorate levels. We divided the epidemic into three time periods: the first wave (Sept 28, 2016, to April 23, 2017), the increasing phase of the second wave (April 24, 2017, to July 2, 2017), and the decreasing phase of the second wave (July 3, 2017, to March 12, 2018). We reconstructed the changes in cholera transmission over time by estimating the instantaneous reproduction number, R. Finally, we estimated the association between rainfall and the daily cholera incidence during the increasing phase of the second epidemic wave by fitting a spatiotemporal regression model.
From Sept 28, 2016, to March 12, 2018, 1 103 683 suspected cholera cases (attack rate 3·69%) and 2385 deaths (case fatality risk 0·22%) were reported countrywide. The epidemic consisted of two distinct waves with a surge in transmission in May, 2017, corresponding to a median R of more than 2 in 13 of 23 governorates. Microbiological analyses suggested that the same Vibrio cholerae O1 Ogawa strain circulated in both waves. We found a positive, non-linear, association between weekly rainfall and suspected cholera incidence in the following 10 days; the relative risk of cholera after a weekly rainfall of 25 mm was 1·42 (95% CI 1·31-1·55) compared with a week without rain.
Our analysis suggests that the small first cholera epidemic wave seeded cholera across Yemen during the dry season. When the rains returned in April, 2017, they triggered widespread cholera transmission that led to the large second wave. These results suggest that cholera could resurge during the ongoing 2018 rainy season if transmission remains active. Therefore, health authorities and partners should immediately enhance current control efforts to mitigate the risk of a new cholera epidemic wave in Yemen.
Health Authorities of Yemen, WHO, and Médecins Sans Frontières.
在饱受战争蹂躏的也门,2016 年 9 月下旬首次报告了确诊的霍乱病例。如今,霍乱疫情仍在也门肆虐,这是现代有记录以来最大的霍乱疫情。我们旨在描述此次疫情的主要流行病学特征,包括疫情爆发期间霍乱传播的驱动因素。
也门卫生当局设立了国家霍乱监测系统,以收集在医疗机构就诊的疑似霍乱病例的信息。个体变量包括症状发作日期、年龄、脱水严重程度和快速诊断检测结果。疑似霍乱病例通过培养进行确认,对部分样本进行了额外的表型和基因型分析。我们首先在国家和省一级进行描述性分析。我们将疫情分为三个时期:第一波(2016 年 9 月 28 日至 2017 年 4 月 23 日)、第二波的增长阶段(2017 年 4 月 24 日至 7 月 2 日)和第二波的下降阶段(2017 年 7 月 3 日至 2018 年 3 月 12 日)。我们通过估计瞬时繁殖数 R 来重建随时间变化的霍乱传播变化。最后,我们通过拟合时空回归模型来估计在第二波疫情增长阶段降雨与每日霍乱发病率之间的关联。
从 2016 年 9 月 28 日至 2018 年 3 月 12 日,全国报告了 1103683 例疑似霍乱病例(发病率 3.69%)和 2385 例死亡(病死率 0.22%)。疫情由两波截然不同的波次组成,2017 年 5 月出现传播高峰,在 23 个省中的 13 个省,R 中位数均超过 2。微生物学分析表明,在这两波疫情中循环的都是同一株霍乱弧菌 O1 Ogawa 血清型。我们发现每周降雨量与未来 10 天内疑似霍乱发病率之间存在正相关,非线性关系;与无雨周相比,每周降雨量为 25 毫米时,霍乱的相对风险为 1.42(95%CI 1.31-1.55)。
我们的分析表明,第一次小的霍乱疫情波在也门的旱季传播了霍乱。2017 年 4 月降雨恢复后,引发了广泛的霍乱传播,导致了第二波大疫情。这些结果表明,如果传播仍然活跃,霍乱可能会在当前正在进行的 2018 年雨季再次爆发。因此,如果传播仍然活跃,卫生当局和合作伙伴应立即加强当前的控制工作,以减轻也门新的霍乱疫情波的风险。
也门卫生当局、世界卫生组织和无国界医生组织。