From the Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
From the Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada
J Biol Chem. 2018 Jun 15;293(24):9311-9325. doi: 10.1074/jbc.RA117.001007. Epub 2018 May 7.
Argonaute (AGO) proteins are essential components of the microRNA (miRNA) pathway. AGO proteins are loaded with miRNAs to target mRNAs and thereby regulate mRNA stability and protein translation. As such, AGO proteins are important actors in controlling local protein synthesis, for instance, at dendritic spines and synapses. Although miRNA-mediated regulation of dendritic mRNAs has become a focus of intense interest over the past years, the mechanisms regulating neuronal AGO proteins remain largely unknown. Here, using rat hippocampal neurons, we report that dendritic Ago2 is down-regulated by the proteasome upon NMDA receptor activation. We found that Ser-387 in Ago2 is dephosphorylated upon NMDA treatment and that this dephosphorylation precedes Ago2 degradation. Expressing Ser-387 phosphorylation-deficient or phosphomimetic Ago2 in neurons, we observed that this phosphorylation site is involved in modulating dendritic spine morphology and postsynaptic density protein 95 (PSD-95) expression in spines. Collectively, our results point toward a signaling pathway linking NMDA receptor-dependent Ago2 dephosphorylation and turnover to postsynaptic structural changes. They support a model in which NMDA receptor-mediated dephosphorylation of Ago2 and Ago2 turnover contributes to the de-repression of mRNAs involved in spine growth and maturation.
Argonaute (AGO) 蛋白是 microRNA (miRNA) 通路的重要组成部分。AGO 蛋白与 miRNA 结合,靶向 mRNAs,从而调节 mRNA 稳定性和蛋白质翻译。因此,AGO 蛋白是控制局部蛋白质合成的重要因素,例如在树突棘和突触中。尽管 miRNA 介导的树突状 mRNAs 调节已成为近年来研究的热点,但神经元 AGO 蛋白的调节机制在很大程度上仍不清楚。在这里,我们使用大鼠海马神经元报告说,NMDA 受体激活后,树突状 Ago2 被蛋白酶体下调。我们发现 Ago2 中的 Ser-387 在 NMDA 处理后去磷酸化,并且这种去磷酸化先于 Ago2 降解。在神经元中表达 Ser-387 磷酸化缺陷或磷酸模拟 Ago2,我们观察到该磷酸化位点参与调节树突棘形态和突触后密度蛋白 95 (PSD-95) 在棘突中的表达。总之,我们的结果表明,NMDA 受体依赖性 Ago2 去磷酸化和周转与突触后结构变化之间存在信号通路。它们支持这样一种模型,即 NMDA 受体介导的 Ago2 去磷酸化和 Ago2 周转有助于解除与棘突生长和成熟相关的 mRNAs 的抑制。