Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.
Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Cancer Res. 2018 Jul 1;78(13):3688-3697. doi: 10.1158/0008-5472.CAN-17-3703. Epub 2018 May 7.
Improved diagnostics for pancreatic ductal adenocarcinoma (PDAC) to detect the disease at earlier, curative stages and to guide treatments is crucial to progress against this disease. The development of a liquid biopsy for PDAC has proven challenging due to the sparsity and variable phenotypic expression of circulating biomarkers. Here we report methods we developed for isolating specific subsets of extracellular vesicles (EV) from plasma using a novel magnetic nanopore capture technique. In addition, we present a workflow for identifying EV miRNA biomarkers using RNA sequencing and machine-learning algorithms, which we used in combination to classify distinct cancer states. Applying this approach to a mouse model of PDAC, we identified a biomarker panel of 11 EV miRNAs that could distinguish mice with PDAC from either healthy mice or those with precancerous lesions in a training set of = 27 mice and a user-blinded validation set of = 57 mice (88% accuracy in a three-way classification). These results provide strong proof-of-concept support for the feasibility of using EV miRNA profiling and machine learning for liquid biopsy. These findings present a panel of extracellular vesicle miRNA blood-based biomarkers that can detect pancreatic cancer at a precancerous stage in a transgenic mouse model. .
提高胰腺导管腺癌 (PDAC) 的诊断水平,以便在更早、更具治愈性的阶段检测到该疾病,并指导治疗,这对于对抗这种疾病至关重要。由于循环生物标志物的稀少性和可变表型表达,开发用于 PDAC 的液体活检已被证明具有挑战性。在这里,我们报告了我们使用新型磁性纳米孔捕获技术从血浆中分离特定细胞外囊泡 (EV) 亚群的方法。此外,我们还提出了一种使用 RNA 测序和机器学习算法识别 EV miRNA 生物标志物的工作流程,我们将其结合使用以对不同的癌症状态进行分类。将这种方法应用于 PDAC 的小鼠模型,我们鉴定出了一个由 11 个 EV miRNA 组成的生物标志物组,可将 PDAC 小鼠与健康小鼠或具有癌前病变的小鼠区分开来,在 27 只小鼠的训练集和 57 只用户盲验证集中的准确率分别为 88%(三分类)。这些结果为使用 EV miRNA 分析和机器学习进行液体活检的可行性提供了强有力的概念验证支持。这些发现提供了一组基于血液的细胞外囊泡 miRNA 生物标志物,可在转基因小鼠模型中在癌前阶段检测到胰腺癌。