Suppr超能文献

微流控辅助多材料无掩模立体光刻生物打印。

Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting.

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Adv Mater. 2018 Jul;30(27):e1800242. doi: 10.1002/adma.201800242. Epub 2018 May 7.

Abstract

A stereolithography-based bioprinting platform for multimaterial fabrication of heterogeneous hydrogel constructs is presented. Dynamic patterning by a digital micromirror device, synchronized by a moving stage and a microfluidic device containing four on/off pneumatic valves, is used to create 3D constructs. The novel microfluidic device is capable of fast switching between different (cell-loaded) hydrogel bioinks, to achieve layer-by-layer multimaterial bioprinting. Compared to conventional stereolithography-based bioprinters, the system provides the unique advantage of multimaterial fabrication capability at high spatial resolution. To demonstrate the multimaterial capacity of this system, a variety of hydrogel constructs are generated, including those based on poly(ethylene glycol) diacrylate (PEGDA) and gelatin methacryloyl (GelMA). The biocompatibility of this system is validated by introducing cell-laden GelMA into the microfluidic device and fabricating cellularized constructs. A pattern of a PEGDA frame and three different concentrations of GelMA, loaded with vascular endothelial growth factor, are further assessed for its neovascularization potential in a rat model. The proposed system provides a robust platform for bioprinting of high-fidelity multimaterial microstructures on demand for applications in tissue engineering, regenerative medicine, and biosensing, which are otherwise not readily achievable at high speed with conventional stereolithographic biofabrication platforms.

摘要

提出了一种基于立体光刻的生物打印平台,用于制造多材料的异质水凝胶结构。通过数字微镜器件进行动态图案设计,与移动台和包含四个通/断气动阀的微流控装置同步,用于创建 3D 结构。新型微流控装置能够在不同的(细胞负载)水凝胶生物墨水之间快速切换,实现逐层多材料生物打印。与传统的基于立体光刻的生物打印机相比,该系统提供了在高空间分辨率下进行多材料制造的独特优势。为了展示该系统的多材料能力,生成了各种水凝胶结构,包括基于聚乙二醇二丙烯酸酯(PEGDA)和明胶甲基丙烯酰(GelMA)的结构。通过将细胞负载的 GelMA 引入微流控装置并制造细胞化结构,验证了该系统的生物相容性。进一步评估了 PEGDA 框架的图案和三种不同浓度的 GelMA(负载血管内皮生长因子)在大鼠模型中的新生血管化潜力。所提出的系统为按需生物打印高保真度多材料微结构提供了一个强大的平台,可用于组织工程、再生医学和生物传感等应用,而这些应用在传统的立体光刻生物制造平台上则难以高速实现。

相似文献

引用本文的文献

3
Light-based vat-polymerization bioprinting.基于光的光固化生物打印
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
7
Lithography-based 3D printing of hydrogels.基于光刻的水凝胶3D打印
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.
10
Lung-on-a-chip: From design principles to disease applications.芯片肺:从设计原理到疾病应用
Biomicrofluidics. 2025 Mar 28;19(2):021501. doi: 10.1063/5.0257908. eCollection 2025 Mar.

本文引用的文献

1
Design and 3D Printing of Hydrogel Scaffolds with Fractal Geometries.具有分形几何形状的水凝胶支架的设计与3D打印
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1763-1770. doi: 10.1021/acsbiomaterials.6b00140. Epub 2016 Jun 2.
2
Bioprinting the Cancer Microenvironment.生物打印癌症微环境
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1710-1721. doi: 10.1021/acsbiomaterials.6b00246. Epub 2016 Jun 17.
3
Bioprinted thrombosis-on-a-chip.生物打印芯片上的血栓。
Lab Chip. 2016 Oct 18;16(21):4097-4105. doi: 10.1039/c6lc00380j.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验