Nieto Daniel, Couceiro Ramiro, Aymerich Maria, Lopez-Lopez Rafael, Abal Miguel, Flores-Arias María Teresa
Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782, Spain.
Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Fundacion Ramon Dominguez, SERGAS, 15706 Santiago de Compostela, Spain.
Colloids Surf B Biointerfaces. 2015 Oct 1;134:363-9. doi: 10.1016/j.colsurfb.2015.07.007. Epub 2015 Jul 11.
We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research.
我们开发了一种基于激光的技术,用于在钠钙玻璃基板上制造微流控微芯片。所提出的方法结合了激光直写技术,作为制造微流控结构的制造工具,随后用二氧化碳激光进行后热处理。这种处理将使生成的微流控结构的形状得以重塑,并改善其形态(粗糙度)和光学质量(透明度)。与其他玻璃微结构化方法相比,常用于材料加工的激光的使用使该技术具有高度竞争力。制造的芯片在用上皮细胞粘附分子(EpCAM)抗体涂层功能化后,用肿瘤细胞(Hec 1A)进行了测试。细胞在流经该装置后成功地停滞在柱上,这使我们的技术在癌症研究领域具有转化应用价值。