Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
Phys Chem Chem Phys. 2021 Apr 14;23(14):8525-8540. doi: 10.1039/d0cp06685k. Epub 2021 Mar 25.
We analyze light-driven overcrowded alkene-based molecular motors, an intriguing class of small molecules that have the potential to generate MHz-scale rotation rates. The full rotation process is simulated at multiple scales by combining quantum surface-hopping molecular dynamics (MD) simulations for the photoisomerization step with classical MD simulations for the thermal helix inversion step. A Markov state analysis resolves conformational substates, their interconversion kinetics, and their roles in the motor's rotation process. Furthermore, motor performance metrics, including rotation rate and maximal power output, are computed to validate computations against experimental measurements and to inform future designs. Lastly, we find that to correctly model these motors, the force field must be optimized by fitting selected parameters to reference quantum mechanical energy surfaces. Overall, our simulations yield encouraging agreement with experimental observables such as rotation rates, and provide mechanistic insights that may help future designs.
我们分析了光驱动的拥挤烯烃基分子马达,这是一类有趣的小分子,有可能产生兆赫兹级别的旋转速率。通过将光致异构化步骤的量子表面跳跃分子动力学 (MD) 模拟与热螺旋反转步骤的经典 MD 模拟相结合,在多个尺度上模拟了完整的旋转过程。马科夫状态分析解析了构象亚态、它们的互变动力学以及它们在马达旋转过程中的作用。此外,还计算了马达性能指标,包括旋转速度和最大功率输出,以将计算与实验测量进行对比,并为未来的设计提供信息。最后,我们发现为了正确模拟这些马达,必须通过拟合选定参数到参考量子力学能量表面来优化力场。总的来说,我们的模拟与旋转速率等实验可观测结果具有令人鼓舞的一致性,并提供了可能有助于未来设计的机械见解。