Pierce Simon
Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy.
Life (Basel). 2023 Aug 15;13(8):1750. doi: 10.3390/life13081750.
The multifarious internal workings of organisms are difficult to reconcile with a single feature defining a state of 'being alive'. Indeed, definitions of life rely on emergent properties (growth, capacity to evolve, agency) only symptomatic of intrinsic functioning. Empirical studies demonstrate that biomolecules including ratcheting or rotating enzymes and ribozymes undergo repetitive conformation state changes driven either directly or indirectly by thermodynamic gradients. They exhibit disparate structures, but govern processes relying on directional physical motion (DNA transcription, translation, cytoskeleton transport) and share the principle of repetitive uniplanar conformation changes driven by thermodynamic gradients, producing dependable unidirectional motion: 'heat engines' exploiting thermodynamic disequilibria to perform work. Recognition that disparate biological molecules demonstrate conformation state changes involving directional motion, working in self-regulating networks, allows a mechanistic definition: life is a self-regulating process whereby matter undergoes cyclic, uniplanar conformation state changes that convert thermodynamic disequilibria into directed motion, performing work that locally reduces entropy. 'Living things' are structures including an autonomous network of units exploiting thermodynamic gradients to drive uniplanar conformation state changes that perform work. These principles are independent of any specific chemical environment, and can be applied to other biospheres.
生物体多种多样的内部运作机制很难与定义“活着”状态的单一特征相协调。事实上,生命的定义依赖于涌现特性(生长、进化能力、能动性),而这些特性仅仅是内在功能的外在表现。实证研究表明,包括棘轮或旋转酶以及核酶在内的生物分子会经历由热力学梯度直接或间接驱动的重复构象状态变化。它们呈现出不同的结构,但控制着依赖定向物理运动的过程(DNA转录、翻译、细胞骨架运输),并共享由热力学梯度驱动的重复单平面构象变化的原理,产生可靠的单向运动:利用热力学不平衡来做功的“热机”。认识到不同的生物分子在自我调节网络中表现出涉及定向运动的构象状态变化,从而得出一个机械论定义:生命是一个自我调节过程,在此过程中物质经历循环的、单平面的构象状态变化,将热力学不平衡转化为定向运动,进行局部降低熵的做功。“生物”是包括利用热力学梯度驱动单平面构象状态变化以做功的自主单元网络的结构。这些原理独立于任何特定的化学环境,并且可以应用于其他生物领域。