Suppr超能文献

神经药理代谢组学在儿童严重创伤性脑损伤中的探索性应用。

Exploratory Application of Neuropharmacometabolomics in Severe Childhood Traumatic Brain Injury.

机构信息

Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA.

Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA.

出版信息

Crit Care Med. 2018 Sep;46(9):1471-1479. doi: 10.1097/CCM.0000000000003203.

Abstract

OBJECTIVES

To employ metabolomics-based pathway and network analyses to evaluate the cerebrospinal fluid metabolome after severe traumatic brain injury in children and the capacity of combination therapy with probenecid and N-acetylcysteine to impact glutathione-related and other pathways and networks, relative to placebo treatment.

DESIGN

Analysis of cerebrospinal fluid obtained from children enrolled in an Institutional Review Board-approved, randomized, placebo-controlled trial of a combination of probenecid and N-acetylcysteine after severe traumatic brain injury (Trial Registration NCT01322009).

SETTING

Thirty-six-bed PICU in a university-affiliated children's hospital.

PATIENTS AND SUBJECTS

Twelve children 2-18 years old after severe traumatic brain injury and five age-matched control subjects.

INTERVENTION

Probenecid (25 mg/kg) and N-acetylcysteine (140 mg/kg) or placebo administered via naso/orogastric tube.

MEASUREMENTS AND MAIN RESULTS

The cerebrospinal fluid metabolome was analyzed in samples from traumatic brain injury patients 24 hours after the first dose of drugs or placebo and control subjects. Feature detection, retention time, alignment, annotation, and principal component analysis and statistical analysis were conducted using XCMS-online. The software "mummichog" was used for pathway and network analyses. A two-component principal component analysis revealed clustering of each of the groups, with distinct metabolomics signatures. Several novel pathways with plausible mechanistic involvement in traumatic brain injury were identified. A combination of metabolomics and pathway/network analyses showed that seven glutathione-centered pathways and two networks were enriched in the cerebrospinal fluid of traumatic brain injury patients treated with probenecid and N-acetylcysteine versus placebo-treated patients. Several additional pathways/networks consisting of components that are known substrates of probenecid-inhibitable transporters were also identified, providing additional mechanistic validation.

CONCLUSIONS

This proof-of-concept neuropharmacometabolomics assessment reveals alterations in known and previously unidentified metabolic pathways and supports therapeutic target engagement of the combination of probenecid and N-acetylcysteine treatment after severe traumatic brain injury in children.

摘要

目的

运用基于代谢组学的途径和网络分析方法,评估儿童严重创伤性脑损伤后脑脊液代谢组学的变化,并评估丙磺舒联合 N-乙酰半胱氨酸治疗相对于安慰剂治疗对谷胱甘肽相关途径和其他途径及网络的影响。

设计

对一项已完成的丙磺舒联合 N-乙酰半胱氨酸治疗严重创伤性脑损伤的多中心、随机、安慰剂对照临床试验(注册号:NCT01322009)中获得的脑脊液进行分析。

地点

一所大学附属儿童医院的 36 张病床的儿科重症监护病房(PICU)。

患者和研究对象

12 例年龄 2-18 岁的严重创伤性脑损伤患儿和 5 例年龄匹配的对照患儿。

干预措施

丙磺舒(25mg/kg)和 N-乙酰半胱氨酸(140mg/kg)或安慰剂通过鼻胃管给予。

测量和主要结果

在药物或安慰剂治疗后 24 小时及对照组中,对创伤性脑损伤患者的脑脊液代谢组学进行分析。采用 XCMS-online 进行特征检测、保留时间、对齐、注释和主成分分析及统计分析。采用“mummichog”软件进行途径和网络分析。双组分主成分分析显示,每组均聚类,具有明显的代谢组学特征。确定了几个可能与创伤性脑损伤有机制关联的新途径。代谢组学与途径/网络分析相结合,显示丙磺舒联合 N-乙酰半胱氨酸治疗组患者脑脊液中有 7 个谷胱甘肽中心途径和 2 个网络富集,而安慰剂治疗组患者则无。还确定了几个包含丙磺舒抑制转运体已知底物的其他途径/网络,提供了额外的机制验证。

结论

本概念验证神经药代代谢组学评估揭示了已知和以前未识别的代谢途径的改变,并支持丙磺舒联合 N-乙酰半胱氨酸治疗儿童严重创伤性脑损伤的治疗靶点。

相似文献

1
Exploratory Application of Neuropharmacometabolomics in Severe Childhood Traumatic Brain Injury.
Crit Care Med. 2018 Sep;46(9):1471-1479. doi: 10.1097/CCM.0000000000003203.
3
N-Acetylcysteine and Probenecid Adjuvant Therapy for Traumatic Brain Injury.
Neurotherapeutics. 2023 Oct;20(6):1529-1537. doi: 10.1007/s13311-023-01422-z. Epub 2023 Aug 18.
7
Cerebrospinal Fluid Markers of Macrophage and Lymphocyte Activation After Traumatic Brain Injury in Children.
Pediatr Crit Care Med. 2015 Jul;16(6):549-57. doi: 10.1097/PCC.0000000000000400.
9
Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine.
Xenobiotica. 2017 Apr;47(4):346-353. doi: 10.1080/00498254.2016.1187777. Epub 2016 Jun 9.
10
N-acetylcysteine reduces brain injury after delayed hypoxemia following traumatic brain injury.
Exp Neurol. 2021 Jan;335:113507. doi: 10.1016/j.expneurol.2020.113507. Epub 2020 Oct 13.

引用本文的文献

1
Brain injury biomarkers as targets for drugs development and personalized treatment for traumatic brain injury patients.
Front Pharmacol. 2025 May 26;16:1606174. doi: 10.3389/fphar.2025.1606174. eCollection 2025.
2
Mitochondria-Targeted Antioxidant Therapeutics for Traumatic Brain Injury.
Antioxidants (Basel). 2024 Feb 29;13(3):303. doi: 10.3390/antiox13030303.
3
N-Acetylcysteine and Probenecid Adjuvant Therapy for Traumatic Brain Injury.
Neurotherapeutics. 2023 Oct;20(6):1529-1537. doi: 10.1007/s13311-023-01422-z. Epub 2023 Aug 18.
4
Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview.
Pharmaceutics. 2021 Oct 26;13(11):1779. doi: 10.3390/pharmaceutics13111779.
5
Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment.
Oxid Med Cell Longev. 2020 Dec 3;2020:8837893. doi: 10.1155/2020/8837893. eCollection 2020.
6
Management of Traumatic Brain Injury: From Present to Future.
Antioxidants (Basel). 2020 Apr 2;9(4):297. doi: 10.3390/antiox9040297.
7

本文引用的文献

3
Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies.
Toxins (Basel). 2016 Nov 30;8(12):358. doi: 10.3390/toxins8120358.
4
Role of Metabolomics in Traumatic Brain Injury Research.
Neurosurg Clin N Am. 2016 Oct;27(4):465-72. doi: 10.1016/j.nec.2016.05.006. Epub 2016 Aug 10.
5
Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine.
Xenobiotica. 2017 Apr;47(4):346-353. doi: 10.1080/00498254.2016.1187777. Epub 2016 Jun 9.
6
Metabolomics: beyond biomarkers and towards mechanisms.
Nat Rev Mol Cell Biol. 2016 Jul;17(7):451-9. doi: 10.1038/nrm.2016.25. Epub 2016 Mar 16.
7
Pathway and network analysis of cancer genomes.
Nat Methods. 2015 Jul;12(7):615-621. doi: 10.1038/nmeth.3440.
8
Autonomous metabolomics for rapid metabolite identification in global profiling.
Anal Chem. 2015 Jan 20;87(2):884-91. doi: 10.1021/ac5025649. Epub 2014 Dec 26.
9
Structure and function of nucleotide sugar transporters: Current progress.
Comput Struct Biotechnol J. 2014 Jun 11;10(16):23-32. doi: 10.1016/j.csbj.2014.05.003. eCollection 2014 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验