Suppr超能文献

Cybathlon脑机接口竞赛:两位四肢瘫痪用户的成功纵向互学。

The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.

机构信息

Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.

出版信息

PLoS Biol. 2018 May 10;16(5):e2003787. doi: 10.1371/journal.pbio.2003787. eCollection 2018 May.

Abstract

This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain-computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG) neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

摘要

这项工作旨在通过参与 Cybathlon 赛事的脑机接口竞赛,证实相互学习在运动想象(MI)脑机接口(BCI)中的重要性和有效性。我们假设,与将重点主要放在 MI BCI 训练的机器学习方面的流行趋势相反,一种全面的相互学习方法可以将三个学习支柱(机器、主体和应用层面)同等重要地重新确立,从而形成一个能够在现实世界场景(如 Cybathlon 赛事)中取得成功的 BCI 用户共生系统。我们按照相互学习的方法对两名患有慢性脊髓损伤(SCI)的严重残障参与者进行训练,以控制他们在虚拟 BCI 竞赛游戏中的化身。竞赛结果证实了这种训练方法的有效性。最重要的是,本研究是少数几个能够提供 BCI 训练过程中主体学习有效性的多方面证据的研究之一。通过两个终端用户、足够的纵向评估以及重要的是在现实世界甚至不利条件下,可以在接口-应用、BCI 输出和脑电图(EEG)神经影像学的各个层面上得出学习相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5577/5944920/b415b2c0ce24/pbio.2003787.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验