Suppr超能文献

基于遗传算法的用于便携式磁共振成像的稀疏哈尔巴赫磁体阵列设计

Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.

作者信息

Cooley Clarissa Zimmerman, Haskell Melissa W, Cauley Stephen F, Sappo Charlotte, Lapierre Cristen D, Ha Christopher G, Stockmann Jason P, Wald Lawrence L

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

IEEE Trans Magn. 2018 Jan;54(1). doi: 10.1109/TMAG.2017.2751001. Epub 2017 Oct 23.

Abstract

Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B fields with standard MRI homogeneity levels (e.g., 0.1 ppm over FOV), particularly when constrained or truncated geometries are needed, such as a head-only magnet where the magnet length is constrained by the shoulders. For portable scanners using rotation of the magnet for spatial encoding with generalized projections, the spatial pattern of the field is important since it acts as the encoding field. In either a static or rotating magnet, it will be important to be able to optimize the field pattern of cylindrical Halbach arrays in a way that retains construction simplicity. To achieve this, we present a method for designing an optimized cylindrical Halbach magnet using the genetic algorithm to achieve either homogeneity (for standard MRI applications) or a favorable spatial encoding field pattern (for rotational spatial encoding applications). We compare the chosen designs against a standard, fully populated sparse Halbach design, and evaluate optimized spatial encoding fields using point-spread-function and image simulations. We validate the calculations by comparing to the measured field of a constructed magnet. The experimentally implemented design produced fields in good agreement with the predicted fields, and the genetic algorithm was successful in improving the chosen metrics. For the uniform target field, an order of magnitude homogeneity improvement was achieved compared to the un-optimized, fully populated design. For the rotational encoding design the resolution uniformity is improved by 95% compared to a uniformly populated design.

摘要

永磁体阵列具有几个吸引人的特性,有利于开发用于脑部成像的低成本便携式磁共振成像(MRI)扫描仪。它们为相对轻便、低至中场的系统提供了潜力,该系统无需低温设备,边缘场小,且无需电力供应或散热需求。然而,圆柱形哈尔巴赫阵列需要外部匀场或机械调整,以产生具有标准MRI均匀性水平(例如,在整个视野范围内为0.1 ppm)的磁场,特别是当需要受限或截断的几何形状时,例如仅用于头部的磁体,其磁体长度受肩部限制。对于使用磁体旋转进行空间编码和广义投影的便携式扫描仪,磁场的空间模式很重要,因为它充当编码场。在静态或旋转磁体中,能够以保持结构简单的方式优化圆柱形哈尔巴赫阵列的磁场模式将非常重要。为了实现这一点,我们提出了一种使用遗传算法设计优化圆柱形哈尔巴赫磁体的方法,以实现均匀性(用于标准MRI应用)或有利的空间编码场模式(用于旋转空间编码应用)。我们将所选设计与标准的、完全填充的稀疏哈尔巴赫设计进行比较,并使用点扩散函数和图像模拟评估优化后的空间编码场。我们通过与构建磁体的测量场进行比较来验证计算结果。实验实施的设计产生的磁场与预测磁场高度吻合,并且遗传算法成功地改善了所选指标。对于均匀目标场,与未优化的、完全填充的设计相比,均匀性提高了一个数量级。对于旋转编码设计,与均匀填充的设计相比,分辨率均匀性提高了95%。

相似文献

1
Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.
IEEE Trans Magn. 2018 Jan;54(1). doi: 10.1109/TMAG.2017.2751001. Epub 2017 Oct 23.
2
Elliptical Halbach magnet and gradient modules for low-field portable magnetic resonance imaging.
NMR Biomed. 2024 Dec;37(12):e5258. doi: 10.1002/nbm.5258. Epub 2024 Sep 30.
3
High-performance permanent magnet array design by a fast genetic algorithm (GA)-based optimization for low-field portable MRI.
J Magn Reson. 2022 Dec;345:107309. doi: 10.1016/j.jmr.2022.107309. Epub 2022 Oct 28.
4
Theoretical foundation for designing multilayer Halbach array magnets for benchtop NMR and MRI.
J Magn Reson. 2022 Nov;344:107322. doi: 10.1016/j.jmr.2022.107322. Epub 2022 Oct 28.
5
An easy-built Halbach magnet for LF-NMR with high homogeneity using optimized target-field passive shimming method.
J Magn Reson. 2023 Dec;357:107582. doi: 10.1016/j.jmr.2023.107582. Epub 2023 Nov 2.
6
Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.
J Magn Reson. 2018 Jul;292:36-43. doi: 10.1016/j.jmr.2018.05.004. Epub 2018 May 9.
7
Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet.
J Magn Reson. 2019 Oct;307:106578. doi: 10.1016/j.jmr.2019.106578. Epub 2019 Aug 20.
8
Shimming Halbach magnets utilizing genetic algorithms to profit from material imperfections.
J Magn Reson. 2016 Apr;265:83-9. doi: 10.1016/j.jmr.2016.01.014. Epub 2016 Feb 1.
9
A portable scanner for magnetic resonance imaging of the brain.
Nat Biomed Eng. 2021 Mar;5(3):229-239. doi: 10.1038/s41551-020-00641-5. Epub 2020 Nov 23.
10
Research of integrated shimming Halbach magnet for High strength, compact Benchtop NMR device.
J Magn Reson. 2023 Oct;355:107559. doi: 10.1016/j.jmr.2023.107559. Epub 2023 Sep 21.

引用本文的文献

1
Simulated radiation levels and patterns of MRI without a Faraday shielded room.
Magn Reson Med. 2025 Aug;94(2):835-851. doi: 10.1002/mrm.30499. Epub 2025 Mar 17.
2
Control of cardiac waves in human iPSC-CM syncytia by a Halbach array and magnetic nanoparticles.
Biophys J. 2025 Apr 15;124(8):1273-1284. doi: 10.1016/j.bpj.2025.03.006. Epub 2025 Mar 12.
3
Magnetostatic reciprocity for MR magnet design.
Magn Reson (Gott). 2021 Aug 4;2(2):607-617. doi: 10.5194/mr-2-607-2021. eCollection 2021.
4
Current role of portable MRI in diagnosis of acute neurological conditions.
Front Neurol. 2023 Sep 29;14:1255858. doi: 10.3389/fneur.2023.1255858. eCollection 2023.
5
Brain imaging with portable low-field MRI.
Nat Rev Bioeng. 2023 Sep;1(9):617-630. doi: 10.1038/s44222-023-00086-w. Epub 2023 Jul 17.
6
Low-field MRI: A report on the 2022 ISMRM workshop.
Magn Reson Med. 2023 Oct;90(4):1682-1694. doi: 10.1002/mrm.29743. Epub 2023 Jun 22.
7
An integrated target field framework for point-of-care halbach array low-field MRI system design.
MAGMA. 2023 Jul;36(3):395-408. doi: 10.1007/s10334-023-01093-z. Epub 2023 May 20.
9
Specific absorption rate (SAR) simulations for low-field (< 0.1 T) MRI systems.
MAGMA. 2023 Jul;36(3):429-438. doi: 10.1007/s10334-023-01073-3. Epub 2023 Mar 18.

本文引用的文献

1
Transmit Array Spatial Encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields.
J Magn Reson. 2016 Jul;268:36-48. doi: 10.1016/j.jmr.2016.04.005. Epub 2016 Apr 8.
2
Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils.
Magn Reson Med. 2015 Feb;73(2):872-83. doi: 10.1002/mrm.25147. Epub 2014 Mar 25.
3
Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.
Phys Rev Lett. 2013 May 3;110(18):180801. doi: 10.1103/PhysRevLett.110.180801. Epub 2013 Apr 30.
4
Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields.
Magn Reson Med. 2013 Sep;70(3):684-96. doi: 10.1002/mrm.24494. Epub 2012 Oct 5.
5
Multidimensionally encoded magnetic resonance imaging.
Magn Reson Med. 2013 Jul;70(1):86-96. doi: 10.1002/mrm.24443. Epub 2012 Aug 24.
6
In vivo O-Space imaging with a dedicated 12 cm Z2 insert coil on a human 3T scanner using phase map calibration.
Magn Reson Med. 2013 Feb;69(2):444-55. doi: 10.1002/mrm.24282. Epub 2012 May 14.
7
Practical considerations for in vivo MRI with higher dimensional spatial encoding.
MAGMA. 2012 Dec;25(6):419-31. doi: 10.1007/s10334-012-0314-y. Epub 2012 Apr 7.
8
Reconstruction of MRI data encoded by multiple nonbijective curvilinear magnetic fields.
Magn Reson Med. 2012 Oct;68(4):1145-56. doi: 10.1002/mrm.24115. Epub 2012 Jan 13.
9
Performance analysis for magnetic resonance imaging with nonlinear encoding fields.
IEEE Trans Med Imaging. 2012 Feb;31(2):391-404. doi: 10.1109/TMI.2011.2169969. Epub 2011 Sep 29.
10
High resolution NMR imaging using a high field yokeless permanent magnet.
Magn Reson Med Sci. 2011;10(3):159-67. doi: 10.2463/mrms.10.159.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验