IEEE Trans Neural Syst Rehabil Eng. 2018 May;26(5):925-935. doi: 10.1109/TNSRE.2018.2818123.
This paper presents a signal modeling-based new methodology of automatic seizure detection in EEG signals. The proposed method consists of three stages. First, a multirate filterbank structure is proposed that is constructed using the basis vectors of discrete cosine transform. The proposed filterbank decomposes EEG signals into its respective brain rhythms: delta, theta, alpha, beta, and gamma. Second, these brain rhythms are statistically modeled with the class of self-similar Gaussian random processes, namely, fractional Brownian motion and fractional Gaussian noises. The statistics of these processes are modeled using a single parameter called the Hurst exponent. In the last stage, the value of Hurst exponent and autoregressive moving average parameters are used as features to design a binary support vector machine classifier to classify pre-ictal, inter-ictal (epileptic with seizure free interval), and ictal (seizure) EEG segments. The performance of the classifier is assessed via extensive analysis on two widely used data set and is observed to provide good accuracy on both the data set. Thus, this paper proposes a novel signal model for EEG data that best captures the attributes of these signals and hence, allows to boost the classification accuracy of seizure and seizure-free epochs.
本文提出了一种基于信号建模的新方法,用于自动检测 EEG 信号中的癫痫发作。该方法包括三个阶段。首先,提出了一种多速率滤波器组结构,该结构使用离散余弦变换的基向量构建。所提出的滤波器组将 EEG 信号分解为其各自的脑节律:δ、θ、α、β 和 γ。其次,这些脑节律使用一类自相似高斯随机过程(即分数布朗运动和分数高斯噪声)进行统计建模。这些过程的统计数据使用单个参数(称为赫斯特指数)进行建模。在最后一个阶段,赫斯特指数和自回归移动平均参数的值被用作特征来设计二进制支持向量机分类器,以对癫痫发作前、发作间期(癫痫发作无间隔)和发作期(癫痫发作)的 EEG 段进行分类。通过对两个广泛使用的数据集进行广泛的分析来评估分类器的性能,结果表明该分类器在两个数据集上都具有很好的准确性。因此,本文提出了一种新的 EEG 数据信号模型,该模型能够很好地捕捉这些信号的属性,从而提高癫痫发作和无癫痫发作期的分类准确性。