Kunekar Pankaj, Dadheech Pankaj, Gupta Mukesh Kumar
Department of Computer Science & Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan (SKIT), Ramnagaria, Jagatpura, Jaipur, Rajasthan 302017 India.
Digital Data Governance Group, National Informatics Centre (NIC), A-Block, CGO Complex, Lodhi Road, New Delhi, 110003 India.
Cogn Neurodyn. 2025 Dec;19(1):83. doi: 10.1007/s11571-025-10268-4. Epub 2025 May 27.
Multiclass epileptic seizureclassification aims to identify and categorize different epileptic seizure types like a non-epileptic seizure, epileptic interictal seizure, and epileptic ictal seizurein individuals based on Electroencephalography (EEG) signal characteristics. Multi-class seizure classification requires recognizing various seizure forms and patterns, which can be challenging due to noise and high variability patterns in EEG signals. Existing models face limitations such as difficulty in handling the complex and dynamic nature of seizure patterns, poor generalization to unseen data, and sensitivity to noise and artifacts, all of which impact classification accuracy and reliability. To address these issues, the Electro Cetacean Optimization based Multi Bidirectional Long Short-Term Memory (ECn-MultiBSTM) model is proposed. The BiLSTM modelis utilized for feature extraction, which captures sequential data by processing data in both forward and backward directions. This bidirectional approach enables the model to identify subtle patterns that distinguish various seizure types with higher accuracy. The ECn-MultiBSTM model also incorporates advanced Electro Cetacean optimizationtechniques that enhance its ability to search efficiently for optimal solutions.Through dynamic social coordination and rapid search strategies, the model fine-tunes its hyperparameters, ensuring improved performance and adaptability.The proposed ECn-MultiBSTM model significantly enhances multiclassseizure classification performance, achieving impressive metrics of 95.84% accuracy, 95.30% precision, 95.54% F1-score,0.94% MCC, 95.79% sensitivity, and 95.88% specificity when evaluated on the CHB-MIT SCALP EEG dataset.
多类癫痫发作分类旨在根据脑电图(EEG)信号特征,识别和分类个体中的不同癫痫发作类型,如非癫痫发作、癫痫发作间期和癫痫发作期。多类癫痫发作分类需要识别各种发作形式和模式,由于EEG信号中的噪声和高度可变模式,这可能具有挑战性。现有模型面临诸多限制,例如难以处理癫痫发作模式的复杂和动态特性、对未见数据的泛化能力差以及对噪声和伪迹敏感,所有这些都会影响分类的准确性和可靠性。为了解决这些问题,提出了基于电鲸优化的多双向长短期记忆(ECn-MultiBSTM)模型。双向长短期记忆(BiLSTM)模型用于特征提取,它通过向前和向后处理数据来捕获序列数据。这种双向方法使模型能够以更高的准确性识别区分各种癫痫发作类型的细微模式。ECn-MultiBSTM模型还融入了先进的电鲸优化技术,增强了其有效搜索最优解的能力。通过动态社会协调和快速搜索策略,该模型对其超参数进行微调,确保性能和适应性得到提升。所提出的ECn-MultiBSTM模型显著提高了多类癫痫发作分类性能,在CHB-MIT头皮EEG数据集上进行评估时,实现了令人印象深刻的指标:准确率95.84%、精确率95.30%、F1分数95.54%、马修斯相关系数0.94%、灵敏度95.79%和特异性95.88%。