Department of Physics, Government College Kottayam, Nattakom, Kerala, India.
J Biol Phys. 2024 Jun;50(2):181-196. doi: 10.1007/s10867-024-09654-6. Epub 2024 Mar 11.
Epilepsy is a type of brain disorder triggered by an abrupt electrical imbalance of neuronal networks. An electroencephalogram (EEG) is a diagnostic tool to capture the underlying brain mechanisms and detect seizure onset in epileptic patients. To detect seizures, neurologists need to manually monitor EEG recordings for long periods, which is challenging and susceptible to errors depending on expertise and experience. Therefore, automatic identification of seizure and seizure-free EEG signals becomes essential. This study introduces a method based on the features extracted from the phase space reconstruction for classifying seizure and seizure-free EEG signals. The computed features are derived from the elliptical area and interquartile range of the Euclidean distance by varying percentage values of data points ranging from 50 to 100%. We consider two public datasets and evaluate these features in each EEG epoch that includes the healthy, interictal, preictal, and ictal stages of epileptic subjects, utilizing the K-nearest neighbor classifier for classification. Results show that the features have higher values during the seizure than the seizure-free EEG signals and healthy subjects. Furthermore, the proposed features can effectively discriminate seizure EEG signals from the seizure-free and normal subjects with 100% accuracy, sensitivity, and specificity in both datasets. Likewise, the classification between the preictal stage and seizure EEG signals attains 98% accuracy. Overall, the reconstructed phase space features significantly enhance the accuracy of detecting epileptic EEG signals compared with existing methods. This advancement holds great potential in assisting neurologists in swiftly and accurately diagnosing epileptic seizures from EEG signals.
癫痫是一种由神经元网络突然电不平衡引起的脑部疾病。脑电图 (EEG) 是一种捕捉潜在大脑机制并检测癫痫患者癫痫发作的诊断工具。为了检测癫痫发作,神经科医生需要长时间手动监测 EEG 记录,这既具有挑战性,又容易受到专业知识和经验的影响而出现错误。因此,自动识别癫痫发作和无癫痫发作的 EEG 信号变得至关重要。本研究提出了一种基于相空间重建中提取特征的方法,用于分类癫痫发作和无癫痫发作的 EEG 信号。计算出的特征是通过改变数据点百分比值(范围为 50% 到 100%),从欧几里得距离的椭圆区域和四分位距中得出的。我们考虑了两个公共数据集,并在每个包括癫痫患者健康、间歇期、发作前期和发作期的 EEG 时段中评估这些特征,利用 K-最近邻分类器进行分类。结果表明,在癫痫发作期间,这些特征的值高于无癫痫发作的 EEG 信号和健康受试者。此外,所提出的特征可以在两个数据集的 100%的准确率、敏感性和特异性下,有效地将癫痫 EEG 信号与无癫痫发作和正常受试者区分开来。同样,在预发性癫痫发作期和癫痫发作 EEG 信号之间的分类达到 98%的准确率。总的来说,与现有方法相比,重建相空间特征显著提高了检测癫痫 EEG 信号的准确性。这一进展有望帮助神经科医生从 EEG 信号中快速准确地诊断癫痫发作。