Suppr超能文献

用于癫痫检测和预测的 EEG 数据集——综述。

EEG datasets for seizure detection and prediction- A review.

机构信息

Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia.

Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.

出版信息

Epilepsia Open. 2023 Jun;8(2):252-267. doi: 10.1002/epi4.12704. Epub 2023 Feb 16.

Abstract

Electroencephalogram (EEG) datasets from epilepsy patients have been used to develop seizure detection and prediction algorithms using machine learning (ML) techniques with the aim of implementing the learned model in a device. However, the format and structure of publicly available datasets are different from each other, and there is a lack of guidelines on the use of these datasets. This impacts the generatability, generalizability, and reproducibility of the results and findings produced by the studies. In this narrative review, we compiled and compared the different characteristics of the publicly available EEG datasets that are commonly used to develop seizure detection and prediction algorithms. We investigated the advantages and limitations of the characteristics of the EEG datasets. Based on our study, we identified 17 characteristics that make the EEG datasets unique from each other. We also briefly looked into how certain characteristics of the publicly available datasets affect the performance and outcome of a study, as well as the influences it has on the choice of ML techniques and preprocessing steps required to develop seizure detection and prediction algorithms. In conclusion, this study provides a guideline on the choice of publicly available EEG datasets to both clinicians and scientists working to develop a reproducible, generalizable, and effective seizure detection and prediction algorithm.

摘要

癫痫患者的脑电图 (EEG) 数据集已被用于使用机器学习 (ML) 技术开发癫痫发作检测和预测算法,目的是在设备中实现所学习的模型。然而,公开可用数据集的格式和结构彼此不同,并且缺乏关于使用这些数据集的指南。这会影响研究产生的结果的可生成性、可泛化性和可重复性。在本叙述性综述中,我们对常用于开发癫痫发作检测和预测算法的常用 EEG 数据集的不同特征进行了编译和比较。我们研究了 EEG 数据集特征的优缺点。根据我们的研究,我们确定了使 EEG 数据集彼此独特的 17 个特征。我们还简要探讨了公开可用数据集的某些特征如何影响研究的性能和结果,以及对选择 ML 技术和开发癫痫发作检测和预测算法所需的预处理步骤的影响。总之,这项研究为临床医生和科学家提供了一个关于选择公开可用 EEG 数据集的指南,以开发可重复、可泛化和有效的癫痫发作检测和预测算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e5b/10235576/a2824ef4b4a5/EPI4-8-252-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验