Wang Guanjie, Wang Changrui, Zhang Xuanguang, Li Zefeng, Zhou Jian, Sun Zhimei
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
iScience. 2024 Apr 4;27(5):109673. doi: 10.1016/j.isci.2024.109673. eCollection 2024 May 17.
Machine learning interatomic potential (MLIP) overcomes the challenges of high computational costs in density-functional theory and the relatively low accuracy in classical large-scale molecular dynamics, facilitating more efficient and precise simulations in materials research and design. In this review, the current state of the four essential stages of MLIP is discussed, including data generation methods, material structure descriptors, six unique machine learning algorithms, and available software. Furthermore, the applications of MLIP in various fields are investigated, notably in phase-change memory materials, structure searching, material properties predicting, and the pre-trained universal models. Eventually, the future perspectives, consisting of standard datasets, transferability, generalization, and trade-off between accuracy and complexity in MLIPs, are reported.
机器学习原子间势(MLIP)克服了密度泛函理论中计算成本高以及经典大规模分子动力学中精度相对较低的挑战,有助于在材料研究与设计中进行更高效、精确的模拟。在这篇综述中,讨论了MLIP四个基本阶段的当前状态,包括数据生成方法、材料结构描述符、六种独特的机器学习算法以及可用软件。此外,还研究了MLIP在各个领域的应用,特别是在相变存储材料、结构搜索、材料性能预测以及预训练通用模型方面的应用。最后,报告了MLIP的未来展望,包括标准数据集、可迁移性、泛化能力以及精度与复杂度之间的权衡。