Suppr超能文献

使用自动化微流控平台探索近红外发射胶体多元铅卤化物钙钛矿纳米晶体

Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform.

作者信息

Lignos Ioannis, Morad Viktoriia, Shynkarenko Yevhen, Bernasconi Caterina, Maceiczyk Richard M, Protesescu Loredana, Bertolotti Federica, Kumar Sudhir, Ochsenbein Stefan T, Masciocchi Norberto, Guagliardi Antonietta, Shih Chih-Jen, Bodnarchuk Maryna I, deMello Andrew J, Kovalenko Maksym V

机构信息

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , Zürich 8093 , Switzerland.

Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , Zürich 8093 , Switzerland.

出版信息

ACS Nano. 2018 Jun 26;12(6):5504-5517. doi: 10.1021/acsnano.8b01122. Epub 2018 May 22.

Abstract

Hybrid organic-inorganic and fully inorganic lead halide perovskite nanocrystals (NCs) have recently emerged as versatile solution-processable light-emitting and light-harvesting optoelectronic materials. A particularly difficult challenge lies in warranting the practical utility of such semiconductor NCs in the red and infrared spectral regions. In this context, all three archetypal A-site monocationic perovskites-CHNHPbI, CH(NH)PbI, and CsPbI-suffer from either chemical or thermodynamic instabilities in their bulk form. A promising approach toward the mitigation of these challenges lies in the formation of multinary compositions (mixed cation and mixed anion). In the case of multinary colloidal NCs, such as quinary Cs FAPb(BrI ) NCs, the outcome of the synthesis is defined by a complex interplay between the bulk thermodynamics of the solid solutions, crystal surface energies, energetics, dynamics of capping ligands, and the multiple effects of the reagents in solution. Accordingly, the rational synthesis of such NCs is a formidable challenge. Herein, we show that droplet-based microfluidics can successfully tackle this problem and synthesize Cs FAPbI and Cs FAPb(BrI ) NCs in both a time- and cost-efficient manner. Rapid in situ photoluminescence and absorption measurements allow for thorough parametric screening, thereby permitting precise optical engineering of these NCs. In this showcase study, we fine-tune the photoluminescence maxima of such multinary NCs between 700 and 800 nm, minimize their emission line widths (to below 40 nm), and maximize their photoluminescence quantum efficiencies (up to 89%) and phase/chemical stabilities. Detailed structural analysis revealed that the Cs FAPb(BrI ) NCs adopt a cubic perovskite structure of FAPbI, with iodide anions partially substituted by bromide ions. Most importantly, we demonstrate the excellent transference of reaction parameters from microfluidics to a conventional flask-based environment, thereby enabling up-scaling and further implementation in optoelectronic devices. As an example, Cs FAPb(BrI ) NCs with an emission maximum at 735 nm were integrated into light-emitting diodes, exhibiting a high external quantum efficiency of 5.9% and a very narrow electroluminescence spectral bandwidth of 27 nm.

摘要

有机-无机杂化和全无机铅卤化物钙钛矿纳米晶体(NCs)最近已成为通用的可溶液加工的发光和光捕获光电子材料。一个特别困难的挑战在于确保此类半导体NCs在红色和红外光谱区域的实际应用。在这种情况下,所有三种原型A位单阳离子钙钛矿——CH₃NH₃PbI₃、CH(NH₂)₂PbI₃和CsPbI₃——在其体相形式下都存在化学或热力学不稳定性。缓解这些挑战的一种有前景的方法在于形成多元组合物(混合阳离子和混合阴离子)。在多元胶体NCs的情况下,例如五元Cs₀.₀₅FA₀.₉₅Pb(Br₀.₅I₀.₅)₃ NCs,合成的结果由固溶体的体相热力学、晶体表面能、封端配体的能量学、动力学以及溶液中试剂的多种效应之间的复杂相互作用决定。因此,此类NCs的合理合成是一项艰巨的挑战。在此,我们表明基于液滴的微流控技术能够成功解决这个问题,并以高效省时且经济的方式合成Cs₀.₀₅FA₀.₉₅PbI₃和Cs₀.₀₅FA₀.₉₅Pb(Br₀.₅I₀.₅)₃ NCs。快速的原位光致发光和吸收测量允许进行全面的参数筛选,从而实现对这些NCs的精确光学工程设计。在这个展示性研究中,我们将此类多元NCs的光致发光最大值在700至800纳米之间进行微调,将其发射线宽最小化(至40纳米以下),并将其光致发光量子效率最大化(高达89%)以及提高其相稳定性/化学稳定性。详细的结构分析表明,Cs₀.₀₅FA₀.₉₅Pb(Br₀.₅I₀.₅)₃ NCs采用FAPbI₃的立方钙钛矿结构,其中碘离子部分被溴离子取代。最重要的是,我们展示了反应参数从微流控环境到传统烧瓶环境的出色转移,从而能够扩大规模并进一步应用于光电器件。例如,发射最大值在735纳米的Cs₀.₀₅FA₀.₉₅Pb(Br₀.₅I₀.₅)₃ NCs被集成到发光二极管中,表现出5.9%的高外部量子效率和27纳米的非常窄的电致发光光谱带宽。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验