Suppr超能文献

组合脂质密码塑造植物内膜系统的静电景观。

A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes.

机构信息

Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France.

UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, Bâtiment A3 - INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux- CS 20032, Villenave d'Ornon 33140, France.

出版信息

Dev Cell. 2018 May 21;45(4):465-480.e11. doi: 10.1016/j.devcel.2018.04.011. Epub 2018 May 10.

Abstract

Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking, and polarity. Here, we explore which are the lipids that control membrane electrostatics using plants as a model. We show that phosphatidylinositol-4-phosphate (PI4P), phosphatidic acidic (PA), and phosphatidylserine (PS) are separately required to generate the electrostatic signature of the plant PM. In addition, we reveal the existence of an electrostatic territory that is organized as a gradient along the endocytic pathway and is controlled by PS/PI4P combination. Altogether, we propose that combinatorial lipid composition of the cytosolic leaflet of organelles not only defines the electrostatic territory but also distinguishes different functional compartments within this territory by specifying their varying surface charges.

摘要

膜表面电荷对于具有多碱性区域的蛋白质暂时且特异性地募集到特定细胞器至关重要。在真核生物中,质膜(PM)是细胞中带负电荷最强的隔室,决定了其身份。因此,膜静电是信号转导、细胞内运输和极性的一个核心参数。在这里,我们使用植物作为模型来探索控制膜静电的是哪些脂质。我们表明,磷脂酰肌醇-4-磷酸(PI4P)、磷脂酸(PA)和磷脂酰丝氨酸(PS)分别是产生植物 PM 静电特征所必需的。此外,我们揭示了存在一个静电领域,它沿着内吞途径组织为一个梯度,并由 PS/PI4P 组合控制。总的来说,我们提出细胞器胞质小叶的组合脂质组成不仅定义了静电领域,而且通过指定其不同的表面电荷来区分该领域内的不同功能隔室。

相似文献

1
A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes.
Dev Cell. 2018 May 21;45(4):465-480.e11. doi: 10.1016/j.devcel.2018.04.011. Epub 2018 May 10.
2
Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.
Plant Signal Behav. 2017 Feb;12(2):e1282022. doi: 10.1080/15592324.2017.1282022.
4
Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine.
Science. 2019 Apr 5;364(6435):57-62. doi: 10.1126/science.aav9959.
8
An electrostatic switching mechanism to control the lipid transfer activity of Osh6p.
Nat Commun. 2019 Sep 2;10(1):3926. doi: 10.1038/s41467-019-11780-y.
9
Membrane phosphatidylserine regulates surface charge and protein localization.
Science. 2008 Jan 11;319(5860):210-3. doi: 10.1126/science.1152066.
10
Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants.
New Phytol. 2022 Aug;235(3):867-874. doi: 10.1111/nph.18258. Epub 2022 Jun 8.

引用本文的文献

4
An origin for a eukaryotic lipid transfer protein fold in Asgard archaea.
bioRxiv. 2025 Jun 8:2025.05.16.653879. doi: 10.1101/2025.05.16.653879.
5
Receptor kinase pathway signal tuning through a nontranscriptional incoherent feedforward loop.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2420575122. doi: 10.1073/pnas.2420575122. Epub 2025 Apr 17.
6
ATP8A1-translocated endosomal phosphatidylserine fine-tunes the multivesicular body formation and the endo-lysosomal traffic.
iScience. 2025 Feb 11;28(3):111973. doi: 10.1016/j.isci.2025.111973. eCollection 2025 Mar 21.
7
Plant PI-PLC signaling in stress and development.
Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiae534.
8
ATG8ylation of vacuolar membrane protects plants against cell wall damage.
Nat Plants. 2025 Feb;11(2):321-339. doi: 10.1038/s41477-025-01907-z. Epub 2025 Feb 7.
9
Imaging Plant Lipids with Fluorescent Reporters.
Plants (Basel). 2024 Dec 25;14(1):15. doi: 10.3390/plants14010015.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验