Suppr超能文献

一种新型基于蛋白质的预后标志物可改善风险分层,以指导早期肺腺癌患者的临床管理。

A novel protein-based prognostic signature improves risk stratification to guide clinical management in early-stage lung adenocarcinoma patients.

机构信息

Program in Solid Tumours, CIMA, Pamplona, Spain.

Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain.

出版信息

J Pathol. 2018 Aug;245(4):421-432. doi: 10.1002/path.5096. Epub 2018 Jun 20.

Abstract

Each of the pathological stages (I-IIIa) of surgically resected non-small-cell lung cancer has hidden biological heterogeneity, manifested as heterogeneous outcomes within each stage. Thus, the finding of robust and precise molecular classifiers with which to assess individual patient risk is an unmet medical need. Here, we identified and validated the clinical utility of a new prognostic signature based on three proteins (BRCA1, QKI, and SLC2A1) to stratify early-stage lung adenocarcinoma patients according to their risk of recurrence or death. Patients were staged according to the new International Association for the Study of Lung Cancer (IASLC) staging criteria (8th edition, 2018). A test cohort (n = 239) was used to assess the value of this new prognostic index (PI) based on the three proteins. The prognostic signature was developed by Cox regression with the use of stringent statistical criteria (TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis). The model resulted in a highly significant predictor of 5-year outcome for disease-free survival (p < 0.001) and overall survival (p < 0.001). The prognostic ability of the model was externally validated in an independent multi-institutional cohort of patients (n = 114, p = 0.021). We also demonstrated that this molecular classifier adds relevant information to the gold standard TNM-based pathological staging, with a highly significant improvement of the likelihood ratio. We subsequently developed a combined PI including both the molecular and the pathological data that improved the risk stratification in both cohorts (p ≤ 0.001). Moreover, the signature may help to select stage I-IIA patients who might benefit from adjuvant chemotherapy. In summary, this protein-based signature accurately identifies those patients with a high risk of recurrence and death, and adds further prognostic information to the TNM-based clinical staging, even when the new IASLC 8th edition staging criteria are applied. More importantly, it may be a valuable tool for selecting patients for adjuvant therapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

摘要

每个手术切除的非小细胞肺癌的病理阶段(I-IIIa)都隐藏着生物异质性,表现为每个阶段内结果的异质性。因此,找到稳健且准确的分子分类器来评估个体患者的风险是一项未满足的医疗需求。在这里,我们鉴定并验证了一种基于三种蛋白(BRCA1、QKI 和 SLC2A1)的新预后标志物的临床实用性,可根据复发或死亡风险对早期肺腺癌患者进行分层。患者根据新的国际肺癌研究协会(IASLC)分期标准(第 8 版,2018 年)进行分期。使用严格的统计学标准(TRIPOD:用于个体预后或诊断的多变量预测模型的透明报告),通过 Cox 回归构建了包含三种蛋白的新预后指数(PI)。该模型对疾病无复发生存(p<0.001)和总生存(p<0.001)的 5 年结局有高度显著的预测价值。在一个独立的多机构患者队列(n=114,p=0.021)中对该模型的预后能力进行了外部验证。我们还证明,该分子分类器可将相关信息添加到基于金标准 TNM 的病理分期中,使似然比有显著提高。随后,我们开发了一个包含分子和病理数据的综合 PI,该综合 PI 可改善两个队列的风险分层(p≤0.001)。此外,该标志物有助于选择可能从辅助化疗中获益的 I 期-IIA 期患者。总之,该基于蛋白的标志物能准确识别复发和死亡风险高的患者,并在 TNM 临床分期的基础上提供进一步的预后信息,即使应用新的 IASLC 第 8 版分期标准也是如此。更重要的是,它可能是选择辅助治疗患者的有价值的工具。版权所有 ©2018 英国和爱尔兰病理学会。由 John Wiley & Sons,Ltd 出版。

相似文献

引用本文的文献

本文引用的文献

6
Cancer Statistics, 2017.《2017 年癌症统计》
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验