Suppr超能文献

单案例设计的渐进效应模型。

A Gradual Effects Model for Single-Case Designs.

机构信息

a The University of Texas at Austin.

出版信息

Multivariate Behav Res. 2018 Jul-Aug;53(4):574-593. doi: 10.1080/00273171.2018.1466681. Epub 2018 May 14.

Abstract

Single-case designs are a class of repeated measures experiments used to evaluate the effects of interventions for small or specialized populations, such as individuals with low-incidence disabilities. There has been growing interest in systematic reviews and syntheses of evidence from single-case designs, but there remains a need to further develop appropriate statistical models and effect sizes for data from the designs. We propose a novel model for single-case data that exhibit nonlinear time trends created by an intervention that produces gradual effects, which build up and dissipate over time. The model expresses a structural relationship between a pattern of treatment assignment and an outcome variable, making it appropriate for both treatment reversal and multiple baseline designs. It is formulated as a generalized linear model so that it can be applied to outcomes measured as frequency counts or proportions, both of which are commonly used in single-case research, while providing readily interpretable effect size estimates such as log response ratios or log odds ratios. We demonstrate the gradual effects model by applying it to data from a single-case study and examine the performance of proposed estimation methods in a Monte Carlo simulation of frequency count data.

摘要

单案例设计是一类重复测量实验,用于评估针对小样本或特定人群(如发病率较低的残疾人)的干预措施的效果。人们对系统综述和综合单案例设计证据越来越感兴趣,但仍需要进一步开发适用于这些设计数据的适当统计模型和效应量。我们提出了一种新的单案例数据模型,该模型表现出由干预措施产生的非线性时间趋势,这种干预措施会逐渐产生影响,并随着时间的推移而积累和消散。该模型表达了一种治疗分配模式与结果变量之间的结构关系,使其适用于治疗反转和多个基线设计。它被构造成广义线性模型,因此可以应用于以频率计数或比例测量的结果,这两者在单案例研究中都很常用,同时提供易于解释的效应量估计,如对数反应比或对数优势比。我们通过将其应用于单案例研究的数据来演示逐渐影响模型,并在频率计数数据的蒙特卡罗模拟中检查所提出的估计方法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验