Department of Communication Science and Disorders, University of Pittsburgh, PA.
Audiology and Speech Pathology Program, VA Pittsburgh Healthcare System, PA.
J Speech Lang Hear Res. 2023 Jun 20;66(6):1908-1927. doi: 10.1044/2022_JSLHR-22-00333. Epub 2022 Dec 21.
Small- studies are the dominant study design supporting evidence-based interventions in communication science and disorders, including treatments for aphasia and related disorders. However, there is little guidance for conducting reproducible analyses or selecting appropriate effect sizes in small- studies, which has implications for scientific review, rigor, and replication. This tutorial aims to (a) demonstrate how to conduct reproducible analyses using effect sizes common to research in aphasia and related disorders and (b) provide a conceptual discussion to improve the reader's understanding of these effect sizes.
We provide a tutorial on reproducible analyses of small- designs in the statistical programming language R using published data from Wambaugh et al. (2017). In addition, we discuss the strengths, weaknesses, reporting requirements, and impact of experimental design decisions on effect sizes common to this body of research.
Reproducible code demonstrates implementation and comparison of within-case standardized mean difference, proportion of maximal gain, tau-U, and frequentist and Bayesian mixed-effects models. Data, code, and an interactive web application are available as a resource for researchers, clinicians, and students.
Pursuing reproducible research is key to promoting transparency in small- treatment research. Researchers and clinicians must understand the properties of common effect size measures to make informed decisions in order to select ideal effect size measures and act as informed consumers of small- studies. Together, a commitment to reproducibility and a keen understanding of effect sizes can improve the scientific rigor and synthesis of the evidence supporting clinical services in aphasiology and in communication sciences and disorders more broadly. Supplemental Material and Open Science Form: https://doi.org/10.23641/asha.21699476.
小样本研究是支持沟通科学与障碍领域循证干预的主要研究设计,包括失语症和相关障碍的治疗。然而,对于在小样本研究中进行可重复分析或选择适当的效应大小,几乎没有指导,这对科学审查、严谨性和复制都有影响。本教程旨在:(a)展示如何使用在失语症和相关障碍研究中常见的效应量进行可重复分析;(b)提供一个概念性讨论,以提高读者对这些效应量的理解。
我们使用 Wambaugh 等人(2017 年)发表的数据,在统计编程语言 R 中提供了关于小样本设计可重复分析的教程。此外,我们讨论了这些效应量的实验设计决策的优缺点、报告要求以及对效应量的影响,这些效应量在这一研究领域中很常见。
可重复的代码演示了在案例内标准化均值差、最大增益比例、tau-U 以及频率论和贝叶斯混合效应模型中的实现和比较。数据、代码和一个交互式网络应用程序可供研究人员、临床医生和学生使用。
追求可重复性研究是促进小样本治疗研究透明度的关键。研究人员和临床医生必须了解常见效应量测量的特性,以便在选择理想的效应量测量时做出明智的决策,并作为小样本研究的知情消费者。共同致力于可重复性和对效应量的深刻理解,可以提高支持失语症和更广泛的沟通科学与障碍领域临床服务的证据的科学严谨性和综合水平。补充材料和开放科学表格:https://doi.org/10.23641/asha.21699476。