Department of Biology and Bioinformatics Program, Boston University, Boston, United States.
Elife. 2018 May 14;7:e34077. doi: 10.7554/eLife.34077.
CTCF and cohesin are key drivers of 3D-nuclear organization, anchoring the megabase-scale Topologically Associating Domains (TADs) that segment the genome. Here, we present and validate a computational method to predict cohesin-and-CTCF binding sites that form intra-TAD DNA loops. The intra-TAD loop anchors identified are structurally indistinguishable from TAD anchors regarding binding partners, sequence conservation, and resistance to cohesin knockdown; further, the intra-TAD loops retain key functional features of TADs, including chromatin contact insulation, blockage of repressive histone mark spread, and ubiquity across tissues. We propose that intra-TAD loops form by the same loop extrusion mechanism as the larger TAD loops, and that their shorter length enables finer regulatory control in restricting enhancer-promoter interactions, which enables selective, high-level expression of gene targets of super-enhancers and genes located within repressive nuclear compartments. These findings elucidate the role of intra-TAD cohesin-and-CTCF binding in nuclear organization associated with widespread insulation of distal enhancer activity.
CTCF 和黏连蛋白是三维核组织的关键驱动因素,锚定了将基因组分割成兆碱基规模的拓扑关联结构域 (TAD)。在这里,我们提出并验证了一种计算方法,用于预测形成 TAD 内 DNA 环的黏连蛋白和 CTCF 结合位点。关于结合伙伴、序列保守性和对黏连蛋白敲低的抗性,所鉴定的 TAD 内环锚定在结构上与 TAD 锚定没有区别;此外,TAD 内环保留了 TAD 的关键功能特征,包括染色质接触绝缘、阻止抑制性组蛋白标记的扩散以及在组织中的普遍性。我们提出,TAD 内环通过与较大的 TAD 环相同的环挤出机制形成,其较短的长度能够在限制增强子-启动子相互作用方面实现更精细的调控控制,从而能够选择性地、高水平地表达超级增强子和位于抑制性核区室中的基因靶标。这些发现阐明了 TAD 内黏连蛋白和 CTCF 结合在与广泛的远端增强子活性绝缘相关的核组织中的作用。