Suppr超能文献

鞋底牵引力和鞋底磨损时的流体排水的变化。

Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.

机构信息

Department of Bioengineering, University of Pittsburgh, 301 Schenley Place, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA.

Department of Industrial Engineering, University of Pittsburgh, 1025 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA.

出版信息

Appl Ergon. 2019 Oct;80:35-42. doi: 10.1016/j.apergo.2019.04.014. Epub 2019 May 15.

Abstract

Shoe wear is known to increase slipping risk, but few studies have systematically studied this relationship. This study investigated the impact of progressive shoe wear on the available coefficient of friction (ACOF) and under-shoe fluid dynamics. Five different slip-resistant shoes were progressively worn using an accelerated, abrasive, wear protocol. The ACOF and fluid forces (the load supported by the fluid) were measured as shoes were slipped across a surface contaminated with a diluted glycerol solution. As the shoes became worn, an initial increase in ACOF was followed by a steady decrease. Low fluid forces were observed prior to wear followed by increased fluid forces as the worn region became larger. Results suggest that traction performance decreases particularly when the heel region without tread exceeds a size of 800 mm. This study supports the concept of developing shoe replacement guidelines based upon the size of the worn region to reduce occupational slips.

摘要

鞋的磨损已知会增加滑倒的风险,但很少有研究系统地研究这种关系。本研究调查了渐进式鞋磨损对可用摩擦系数(ACOF)和鞋底流体动力学的影响。使用加速、磨损的磨损协议,对五种不同的抗滑鞋进行了渐进式磨损。当鞋子在涂有稀释甘油溶液的表面上滑动时,测量 ACOF 和流体力(流体支撑的载荷)。随着鞋子的磨损,ACOF 最初会增加,然后逐渐下降。在磨损之前,观察到低的流体力,然后随着磨损区域的增大,流体力增加。结果表明,特别是当没有胎面的鞋跟区域超过 800mm 时,牵引力性能会下降。本研究支持根据磨损区域的大小制定换鞋指南以减少职业性滑倒的概念。

相似文献

1
Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
Appl Ergon. 2019 Oct;80:35-42. doi: 10.1016/j.apergo.2019.04.014. Epub 2019 May 15.
2
Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
J Safety Res. 2020 Sep;74:219-225. doi: 10.1016/j.jsr.2020.06.005. Epub 2020 Jul 9.
3
Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
J Biomech. 2020 May 22;105:109797. doi: 10.1016/j.jbiomech.2020.109797. Epub 2020 Apr 18.
4
Performance testing of work shoes labeled as slip resistant.
Appl Ergon. 2018 Apr;68:304-312. doi: 10.1016/j.apergo.2017.12.008. Epub 2017 Dec 26.
5
An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
Appl Ergon. 2020 Oct;88:103140. doi: 10.1016/j.apergo.2020.103140. Epub 2020 May 20.
6
Differences in Friction Performance between New and Worn Shoes.
IISE Trans Occup Ergon Hum Factors. 2020 Oct-Dec;8(4):209-214. doi: 10.1080/24725838.2021.1925998. Epub 2021 Jun 16.
7
Effects of natural shoe wear on traction performance: a longitudinal study.
Footwear Sci. 2022;14(1):1-12. doi: 10.1080/19424280.2021.1994022. Epub 2021 Nov 11.
8
Prediction of coefficient of friction based on footwear outsole features.
Appl Ergon. 2020 Jan;82:102963. doi: 10.1016/j.apergo.2019.102963. Epub 2019 Nov 1.
10

引用本文的文献

2
Validation of a portable shoe tread scanner to predict slip risk.
J Safety Res. 2023 Sep;86:5-11. doi: 10.1016/j.jsr.2023.05.014. Epub 2023 May 27.
3
Effects of natural shoe wear on traction performance: a longitudinal study.
Footwear Sci. 2022;14(1):1-12. doi: 10.1080/19424280.2021.1994022. Epub 2021 Nov 11.
4
Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
Appl Ergon. 2024 Jan;114:104110. doi: 10.1016/j.apergo.2023.104110. Epub 2023 Aug 16.
5
Shoe Tread Wear Occurs Primarily during Early Stance and Precedes the Peak Required Coefficient of Friction.
Footwear Sci. 2022;14(3):219-228. doi: 10.1080/19424280.2022.2124319. Epub 2022 Sep 29.
6
Gait kinetics impact shoe tread wear rate.
Gait Posture. 2021 May;86:157-161. doi: 10.1016/j.gaitpost.2021.03.006. Epub 2021 Mar 8.
7
Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
J Safety Res. 2020 Sep;74:219-225. doi: 10.1016/j.jsr.2020.06.005. Epub 2020 Jul 9.
8
Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
Tribol Int. 2020 May;145. doi: 10.1016/j.triboint.2020.106161. Epub 2020 Jan 8.
9
An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
Appl Ergon. 2020 Oct;88:103140. doi: 10.1016/j.apergo.2020.103140. Epub 2020 May 20.
10
Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
J Biomech. 2020 May 22;105:109797. doi: 10.1016/j.jbiomech.2020.109797. Epub 2020 Apr 18.

本文引用的文献

1
Computational Model of Shoe Wear Progression: Comparison with Experimental Results.
Wear. 2019 Mar 15;422-423:235-241. doi: 10.1016/j.wear.2019.01.070.
2
A Method for Measuring Fluid Pressures in the Shoe-Floor-Fluid Interface: Application to Shoe Tread Evaluation.
IIE Trans Occup. 2014;2(2):53-59. doi: 10.1080/21577323.2014.919367. Epub 2014 Nov 24.
3
Coefficient of friction testing parameters influence the prediction of human slips.
Appl Ergon. 2018 Jul;70:118-126. doi: 10.1016/j.apergo.2018.02.017. Epub 2018 Mar 20.
4
Kinematics and kinetics of the shoe during human slips.
J Biomech. 2018 Jun 6;74:57-63. doi: 10.1016/j.jbiomech.2018.04.018. Epub 2018 Apr 25.
5
Performance testing of work shoes labeled as slip resistant.
Appl Ergon. 2018 Apr;68:304-312. doi: 10.1016/j.apergo.2017.12.008. Epub 2017 Dec 26.
7
State of science: occupational slips, trips and falls on the same level.
Ergonomics. 2016 Jul;59(7):861-83. doi: 10.1080/00140139.2016.1157214. Epub 2016 Mar 30.
9
Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
J Biomech. 2014 Jan 22;47(2):458-63. doi: 10.1016/j.jbiomech.2013.10.046. Epub 2013 Nov 8.
10
A prospective study of floor surface, shoes, floor cleaning and slipping in US limited-service restaurant workers.
Occup Environ Med. 2011 Apr;68(4):279-85. doi: 10.1136/oem.2010.056218. Epub 2010 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验