Suppr超能文献

脑肿瘤的发育起源:一个细胞和分子框架。

The developmental origin of brain tumours: a cellular and molecular framework.

机构信息

Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.

Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.

出版信息

Development. 2018 May 14;145(10):dev162693. doi: 10.1242/dev.162693.

Abstract

The development of the nervous system relies on the coordinated regulation of stem cell self-renewal and differentiation. The discovery that brain tumours contain a subpopulation of cells with stem/progenitor characteristics that are capable of sustaining tumour growth has emphasized the importance of understanding the cellular dynamics and the molecular pathways regulating neural stem cell behaviour. By focusing on recent work on glioma and medulloblastoma, we review how lineage tracing contributed to dissecting the embryonic origin of brain tumours and how lineage-specific mechanisms that regulate stem cell behaviour in the embryo may be subverted in cancer to achieve uncontrolled proliferation and suppression of differentiation.

摘要

神经系统的发育依赖于干细胞自我更新和分化的协调调节。人们发现,脑瘤中存在一小部分具有干细胞/祖细胞特征的细胞,这些细胞能够维持肿瘤生长,这强调了理解调节神经干细胞行为的细胞动力学和分子途径的重要性。本文通过关注胶质瘤和髓母细胞瘤的最新研究工作,综述了谱系示踪技术如何有助于剖析脑瘤的胚胎起源,以及调节胚胎中干细胞行为的谱系特异性机制在癌症中可能被颠覆,从而实现不受控制的增殖和分化抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9a/6001369/4da075f25b5d/develop-145-162693-g1.jpg

相似文献

1
The developmental origin of brain tumours: a cellular and molecular framework.
Development. 2018 May 14;145(10):dev162693. doi: 10.1242/dev.162693.
2
Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology.
J Child Neurol. 2003 Dec;18(12):851-66; discussion 867. doi: 10.1177/088307380301801205.
3
Developmental origins and oncogenic pathways in malignant brain tumors.
Wiley Interdiscip Rev Dev Biol. 2019 Jul;8(4):e342. doi: 10.1002/wdev.342. Epub 2019 Apr 3.
4
Stem cells in brain tumorigenesis and their impact on therapy.
Curr Stem Cell Res Ther. 2011 Dec;6(4):339-49. doi: 10.2174/157488811797904317.
5
Signals that regulate the oncogenic fate of neural stem cells and progenitors.
Exp Neurol. 2014 Oct;260:56-68. doi: 10.1016/j.expneurol.2013.01.027. Epub 2013 Jan 31.
6
Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC.
Cancer Cell. 2012 May 15;21(5):601-613. doi: 10.1016/j.ccr.2012.04.012.
7
Developmentally regulated signaling pathways in glioma invasion.
Cell Mol Life Sci. 2018 Feb;75(3):385-402. doi: 10.1007/s00018-017-2608-8. Epub 2017 Aug 18.
9
MicroRNAs as regulators of neural stem cell-related pathways in glioblastoma multiforme.
Mol Neurobiol. 2011 Dec;44(3):235-49. doi: 10.1007/s12035-011-8196-y. Epub 2011 Jul 5.
10
Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult.
Stem Cells Transl Med. 2012 Apr;1(4):298-308. doi: 10.5966/sctm.2011-0045. Epub 2012 Apr 10.

引用本文的文献

1
Cell fate acquisition and reprogramming by the proneural transcription factor ASCL1.
Open Biol. 2025 Jun;15(6):250018. doi: 10.1098/rsob.250018. Epub 2025 Jun 18.
2
Tumors and their microenvironments: Learning from pediatric brain pathologies.
Biochim Biophys Acta Rev Cancer. 2025 Jul;1880(3):189328. doi: 10.1016/j.bbcan.2025.189328. Epub 2025 Apr 18.
3
Harnessing human iPSC-microglia for CNS-wide delivery of disease-modifying proteins.
Cell Stem Cell. 2025 Jun 5;32(6):914-934.e8. doi: 10.1016/j.stem.2025.03.009. Epub 2025 Apr 14.
5
Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.
J Transl Med. 2025 Jan 13;23(1):52. doi: 10.1186/s12967-024-06063-0.
6
Morphoregulatory ADD3 underlies glioblastoma growth and formation of tumor-tumor connections.
Life Sci Alliance. 2024 Nov 26;8(2). doi: 10.26508/lsa.202402823. Print 2025 Feb.
7
Poly-ADP-ribosylation dynamics, signaling, and analysis.
Environ Mol Mutagen. 2024 Nov;65(9):315-337. doi: 10.1002/em.22623. Epub 2024 Sep 2.
8
Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells.
Cancer Control. 2024 Jan-Dec;31:10732748241270564. doi: 10.1177/10732748241270564.
10
Therapeutic potential of human microglia transplantation in a chimeric model of CSF1R-related leukoencephalopathy.
Neuron. 2024 Aug 21;112(16):2686-2707.e8. doi: 10.1016/j.neuron.2024.05.023. Epub 2024 Jun 18.

本文引用的文献

1
TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis.
Nature. 2018 Feb 22;554(7693):538-543. doi: 10.1038/nature25492. Epub 2018 Feb 14.
2
H3.3 Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas.
Cancer Cell. 2017 Nov 13;32(5):684-700.e9. doi: 10.1016/j.ccell.2017.09.014. Epub 2017 Oct 26.
3
Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications.
Neuro Oncol. 2018 Apr 9;20(5):608-620. doi: 10.1093/neuonc/nox183.
4
Cancer stem cells revisited.
Nat Med. 2017 Oct 6;23(10):1124-1134. doi: 10.1038/nm.4409.
5
Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma.
Cancer Cell. 2017 Oct 9;32(4):520-537.e5. doi: 10.1016/j.ccell.2017.08.017. Epub 2017 Sep 28.
7
Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy.
Nature. 2017 Sep 14;549(7671):227-232. doi: 10.1038/nature23666. Epub 2017 Aug 30.
8
Targeting NEK2 attenuates glioblastoma growth and radioresistance by destabilizing histone methyltransferase EZH2.
J Clin Invest. 2017 Aug 1;127(8):3075-3089. doi: 10.1172/JCI89092. Epub 2017 Jul 24.
9
The whole-genome landscape of medulloblastoma subtypes.
Nature. 2017 Jul 19;547(7663):311-317. doi: 10.1038/nature22973.
10
Super-Enhancer-Driven Transcriptional Dependencies in Cancer.
Trends Cancer. 2017 Apr;3(4):269-281. doi: 10.1016/j.trecan.2017.03.006. Epub 2017 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验