Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
Joint BioEnergy Institute, Emeryville, California 94608.
Plant Physiol. 2018 Jul;177(3):938-952. doi: 10.1104/pp.18.00396. Epub 2018 May 14.
Glycosylinositol phosphorylceramides (GIPCs), which have a ceramide core linked to a glycan headgroup of varying structures, are the major sphingolipids in the plant plasma membrane. Recently, we identified the major biosynthetic genes for GIPC glycosylation in Arabidopsis () and demonstrated that the glycan headgroup is essential for plant viability. However, the function of GIPCs and the significance of their structural variation are poorly understood. Here, we characterized the Arabidopsis glycosyltransferase GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) and showed that it is responsible for the glycosylation of a subgroup of GIPCs found in seeds and pollen that contain GlcNAc and GlcN [collectively GlcN(Ac)]. In Arabidopsis plants, loss of the GlcN(Ac) GIPCs did not affect vegetative growth, although seed germination was less sensitive to abiotic stress than in wild-type plants. However, in rice, where GlcN(Ac) containing GIPCs are the major GIPC subgroup in vegetative tissue, loss of GINT1 was seedling lethal. Furthermore, we could produce, de novo, "rice-like" GlcN(Ac) GIPCs in Arabidopsis leaves, which allowed us to test the function of different sugars in the GIPC headgroup. This study describes a monocot GIPC biosynthetic enzyme and shows that its Arabidopsis homolog has the same biochemical function. We also identify a possible role for GIPCs in maintaining cell-cell adhesion.
糖基肌醇磷酸神经酰胺(GIPC),其具有连接到不同结构聚糖头基的神经酰胺核心,是植物质膜中主要的鞘脂。最近,我们鉴定了拟南芥中 GIPC 糖基化的主要生物合成基因,并证明了聚糖头基对植物活力是必需的。然而,GIPC 的功能及其结构变异的意义还知之甚少。在这里,我们对拟南芥糖基转移酶 GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1(GINT1)进行了表征,并表明它负责糖苷化一组在种子和花粉中发现的 GIPC,这些 GIPC 含有 GlcNAc 和 GlcN[统称为 GlcN(Ac)]。在拟南芥 gint1 突变体中,GlcN(Ac)GIPC 的缺失并不影响营养生长,尽管种子萌发对非生物胁迫的敏感性比野生型植物低。然而,在水稻中,含有 GlcN(Ac)的 GIPC 是营养组织中主要的 GIPC 亚群,gint1 的缺失是致死的。此外,我们可以在拟南芥叶片中从头合成“水稻样”的 GlcN(Ac)GIPC,这使我们能够测试 GIPC 头基中不同糖的功能。本研究描述了一种单子叶植物 GIPC 生物合成酶,并表明其拟南芥同源物具有相同的生化功能。我们还确定了 GIPC 在维持细胞-细胞黏附中的可能作用。