Suppr超能文献

用于深部组织双光子荧光显微镜的基于光纤的可调重复频率光源。

Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.

作者信息

Charan Kriti, Li Bo, Wang Mengran, Lin Charles P, Xu Chris

机构信息

School of Applied Physics and Engineering, Cornell University, Ithaca, NY 14850, USA.

Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Biomed Opt Express. 2018 Apr 23;9(5):2304-2311. doi: 10.1364/BOE.9.002304. eCollection 2018 May 1.

Abstract

Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz.

摘要

深部组织多光子成像需要高峰值功率来增强信号,同时需要低平均功率来防止热损伤。通过调整激光重复频率而非简单地调节平均功率,能够有利地实现这两个目标。我们表明,在小鼠大脑中进行深部双光子成像的理想重复频率在1至10兆赫兹之间,并且我们展示了一种基于光纤的光源,其重复频率在此范围内可任意调谐。将这种新光源的性能与锁模钛宝石(Ti:S)激光器进行比较,用于小鼠脑血管系统成像。在2.5兆赫兹时,光纤光源获得与工作在80兆赫兹的标准Ti:S激光器相同信号所需的平均功率低5.1倍。

相似文献

1
Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.
Biomed Opt Express. 2018 Apr 23;9(5):2304-2311. doi: 10.1364/BOE.9.002304. eCollection 2018 May 1.
3
Multiphoton excitation imaging via an actively mode-locked tunable fiber-cavity SOA laser around 800 nm.
Biomed Opt Express. 2022 Jan 3;13(2):525-538. doi: 10.1364/BOE.447010. eCollection 2022 Feb 1.
4
Multiphoton in vivo imaging with a femtosecond semiconductor disk laser.
Biomed Opt Express. 2017 Jun 13;8(7):3213-3231. doi: 10.1364/BOE.8.003213. eCollection 2017 Jul 1.
5
High energy (>40 nJ), sub-100 fs, 950 nm laser for two-photon microscopy.
Opt Express. 2021 Nov 22;29(24):38979-38988. doi: 10.1364/OE.440254.
6
Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser.
Biomed Opt Express. 2016 Jan 6;7(2):324-34. doi: 10.1364/BOE.7.000324. eCollection 2016 Feb 1.
7
Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for biomedical imaging.
Biomed Opt Express. 2016 Aug 19;7(9):3531-3542. doi: 10.1364/BOE.7.003531. eCollection 2016 Sep 1.
8
Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron.
Opt Express. 2014 Jun 30;22(13):16456-61. doi: 10.1364/OE.22.016456.
10
Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system.
Opt Express. 2012 Mar 26;20(7):7015-21. doi: 10.1364/OE.20.007015.

引用本文的文献

1
Two-photon microscopy using picosecond pulses from four-wave mixing in a Yb-doped photonic crystal fiber.
Biomed Opt Express. 2025 May 14;16(6):2327-2336. doi: 10.1364/BOE.563581. eCollection 2025 Jun 1.
2
Compact femtosecond fiber laser tunable from 800 to 850 nm with pulse energy exceeding 5 nJ.
Sci Rep. 2025 May 29;15(1):18867. doi: 10.1038/s41598-025-04063-8.
3
Photophysics-informed two-photon voltage imaging using FRET-opsin voltage indicators.
Sci Adv. 2025 Jan 10;11(2):eadp5763. doi: 10.1126/sciadv.adp5763. Epub 2025 Jan 8.
4
Deep and dynamic metabolic and structural imaging in living tissues.
Sci Adv. 2024 Dec 13;10(50):eadp2438. doi: 10.1126/sciadv.adp2438. Epub 2024 Dec 11.
5
Optimized intravital three-photon imaging of intact mouse tibia links plasma cell motility to functional states.
iScience. 2024 Sep 17;27(10):110985. doi: 10.1016/j.isci.2024.110985. eCollection 2024 Oct 18.
6
Optical constraints on two-photon voltage imaging.
Neurophotonics. 2024 Jul;11(3):035007. doi: 10.1117/1.NPh.11.3.035007. Epub 2024 Aug 13.
8
Photophysics-informed two-photon voltage imaging using FRET-opsin voltage indicators.
bioRxiv. 2024 Apr 2:2024.04.01.587540. doi: 10.1101/2024.04.01.587540.
9
Compact simultaneous label-free autofluorescence multi-harmonic microscopy for user-friendly photodamage-monitored imaging.
J Biomed Opt. 2024 Mar;29(3):036501. doi: 10.1117/1.JBO.29.3.036501. Epub 2024 Mar 14.
10
Numerical study of a convective cooling strategy for increasing safe power levels in two-photon brain imaging.
Biomed Opt Express. 2024 Jan 3;15(2):540-557. doi: 10.1364/BOE.507517. eCollection 2024 Feb 1.

本文引用的文献

1
multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure.
Biomed Opt Express. 2017 Jun 28;8(7):3470-3481. doi: 10.1364/BOE.8.003470. eCollection 2017 Jul 1.
2
Multiphoton in vivo imaging with a femtosecond semiconductor disk laser.
Biomed Opt Express. 2017 Jun 13;8(7):3213-3231. doi: 10.1364/BOE.8.003213. eCollection 2017 Jul 1.
3
Fast volumetric calcium imaging across multiple cortical layers using sculpted light.
Nat Methods. 2016 Dec;13(12):1021-1028. doi: 10.1038/nmeth.4040. Epub 2016 Oct 31.
4
Brain heating induced by near-infrared lasers during multiphoton microscopy.
J Neurophysiol. 2016 Sep 1;116(3):1012-23. doi: 10.1152/jn.00275.2016. Epub 2016 Jun 8.
5
Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence.
Opt Express. 2015 Nov 30;23(24):31472-83. doi: 10.1364/OE.23.031472.
6
Improved two-photon imaging of living neurons in brain tissue through temporal gating.
Biomed Opt Express. 2015 Sep 17;6(10):4027-36. doi: 10.1364/BOE.6.004027. eCollection 2015 Oct 1.
7
Dependence of Two-Photon eGFP Bleaching on Femtosecond Pulse Spectral Amplitude and Phase.
J Fluoresc. 2015 Nov;25(6):1775-85. doi: 10.1007/s10895-015-1667-1. Epub 2015 Sep 28.
8
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11377-82. doi: 10.1073/pnas.1514209112. Epub 2015 Aug 24.
9
three-photon microscopy of subcortical structures within an intact mouse brain.
Nat Photonics. 2013 Mar 1;7(3):205-9. doi: 10.1038/nphoton.2012.336.
10
Soliton Self-Frequency Shift: Experimental Demonstrations and Applications.
IEEE J Sel Top Quantum Electron. 2008;14(3):713-723. doi: 10.1109/JSTQE.2008.915526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验