Phil Brooks F, Davis Hunter C, Wong-Campos J David, Cohen Adam E
Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States.
Neurophotonics. 2024 Jul;11(3):035007. doi: 10.1117/1.NPh.11.3.035007. Epub 2024 Aug 13.
Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits , but the relative merits and limitations of one-photon (1P) versus two-photon (2P) voltage imaging are not well characterized.
We consider the optical and biophysical constraints particular to 1P and 2P voltage imaging and compare the imaging properties of commonly used GEVIs under 1P and 2P excitation.
We measure the brightness and voltage sensitivity of voltage indicators from commonly used classes under 1P and 2P illumination. We also measure the decrease in fluorescence as a function of depth in the mouse brain. We develop a simple model of the number of measurable cells as a function of reporter properties, imaging parameters, and desired signal-to-noise ratio (SNR). We then discuss how the performance of voltage imaging would be affected by sensor improvements and by recently introduced advanced imaging modalities.
Compared with 1P excitation, 2P excitation requires -fold more illumination power per cell to produce similar photon count rates. For voltage imaging with JEDI-2P in the mouse cortex with a target SNR of 10 (spike height to baseline shot noise), a measurement bandwidth of 1 kHz, a thermally limited laser power of 200 mW, and an imaging depth of , 2P voltage imaging using an 80-MHz source can record from no more than neurons simultaneously.
Due to the stringent photon-count requirements of voltage imaging and the modest voltage sensitivity of existing reporters, 2P voltage imaging faces a stringent tradeoff between shot noise and tissue photodamage. 2P imaging of hundreds of neurons with high SNR at a depth of will require either major improvements in 2P GEVIs or qualitatively new approaches to imaging.
基因编码电压指示剂(GEVIs)是研究神经回路的一种有价值的工具,但单光子(1P)与双光子(2P)电压成像的相对优点和局限性尚未得到充分表征。
我们考虑1P和2P电压成像特有的光学和生物物理限制,并比较常用GEVIs在1P和2P激发下的成像特性。
我们测量了常用类型的电压指示剂在1P和2P照明下的亮度和电压灵敏度。我们还测量了小鼠大脑中荧光随深度的降低。我们开发了一个简单的模型,将可测量细胞的数量作为报告基因特性、成像参数和所需信噪比(SNR)的函数。然后,我们讨论了传感器改进和最近引入的先进成像模式将如何影响电压成像的性能。
与1P激发相比,2P激发每个细胞需要多 - 倍的照明功率才能产生相似的光子计数率。对于在小鼠皮层中使用JEDI - 2P进行电压成像,目标SNR为10(尖峰高度与基线散粒噪声),测量带宽为1 kHz,热限制激光功率为200 mW,成像深度为 ,使用80 MHz光源的2P电压成像同时记录的神经元不超过 个。
由于电压成像对光子计数的严格要求以及现有报告基因的适度电压灵敏度,2P电压成像在散粒噪声和组织光损伤之间面临着严格的权衡。在深度为 处对数百个神经元进行高SNR的2P成像将需要2P GEVIs的重大改进或定性的新成像方法。