Krawczyk Bartosz, Kudlinski Alexandre, Murray Robert T, Schultz Simon R, Foust Amanda J, Runcorn Timothy H
Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW, UK.
Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
Biomed Opt Express. 2025 May 14;16(6):2327-2336. doi: 10.1364/BOE.563581. eCollection 2025 Jun 1.
Two-photon microscopy (TPM) enables deep tissue imaging but requires excitation pulses that have a large product of average and peak power, typically supplied by femtosecond solid-state lasers. However, these lasers are bulky, and femtosecond pulses require careful dispersion management to avoid pulse broadening, particularly when delivery fibers are used. Here we present a compact, fiber-based picosecond laser source operating at 790 nm for TPM using an ytterbium-doped photonic crystal fiber (Yb-doped PCF). The Yb-doped PCF simultaneously amplifies 1064 nm input pulses and efficiently converts them to 790 nm via four-wave mixing, generating pulses with a peak power of up to ∼3.8 kW. The source has a variable repetition rate (1.48 MHz-14.78 MHz), enabling the two-photon excitation fluorescence signal to be maximized in the presence of excitation saturation. We benchmark our picosecond laser source against a femtosecond Ti:Sapphire laser for TPM of stained samples and demonstrate comparable fluorescence signal when the two-photon excitation conditions are matched.
双光子显微镜(TPM)能够实现深层组织成像,但需要平均功率和峰值功率乘积较大的激发脉冲,通常由飞秒固态激光器提供。然而,这些激光器体积庞大,并且飞秒脉冲需要仔细的色散管理以避免脉冲展宽,特别是在使用传输光纤时。在此,我们展示了一种紧凑的、基于光纤的皮秒激光源,其工作波长为790 nm,用于使用掺镱光子晶体光纤(Yb掺杂PCF)的TPM。Yb掺杂PCF同时放大1064 nm输入脉冲,并通过四波混频将其高效转换为790 nm,产生峰值功率高达约3.8 kW的脉冲。该光源具有可变重复频率(1.48 MHz - 14.78 MHz),能够在存在激发饱和的情况下使双光子激发荧光信号最大化。我们将我们的皮秒激光源与用于染色样品TPM的飞秒钛宝石激光器进行了对比测试,并证明在双光子激发条件匹配时具有可比的荧光信号。