Senseable City Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, USA.
Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway.
Sci Data. 2023 Aug 5;10(1):524. doi: 10.1038/s41597-023-02425-3.
Environmental data with a high spatio-temporal resolution is vital in informing actions toward tackling urban sustainability challenges. Yet, access to hyperlocal environmental data sources is limited due to the lack of monitoring infrastructure, consistent data quality, and data availability to the public. This paper reports environmental data (PM, NO, temperature, and relative humidity) collected from 2020 to 2022 and calibrated in four deployments in three global cities. Each data collection campaign targeted a specific urban environmental problem related to air quality, such as tree diversity, community exposure disparities, and excess fossil fuel usage. Firstly, we introduce the mobile platform design and its deployment in Boston (US), NYC (US), and Beirut (Lebanon). Secondly, we present the data cleaning and validation process, for the air quality data. Lastly, we explain the data format and how hyperlocal environmental datasets can be used standalone and with other data to assist evidence-based decision-making. Our mobile environmental sensing datasets include cities of varying scales, aiming to address data scarcity in developing regions and support evidence-based environmental policymaking.
环境数据具有高时空分辨率,对于解决城市可持续发展挑战的行动至关重要。然而,由于缺乏监测基础设施、数据质量不一致以及公众获取数据的途径有限,因此获取超本地环境数据源受到限制。本文报告了从 2020 年到 2022 年收集的环境数据(PM、NO、温度和相对湿度),并在三个全球城市的四次部署中进行了校准。每次数据收集活动都针对与空气质量相关的特定城市环境问题,例如树种多样性、社区暴露差异和过度使用化石燃料。首先,我们介绍了移动平台的设计及其在美国波士顿、纽约市和黎巴嫩贝鲁特的部署。其次,我们介绍了空气质量数据的清理和验证过程。最后,我们解释了数据格式以及如何单独使用和结合其他数据使用超本地环境数据集来辅助基于证据的决策制定。我们的移动环境传感数据集包括不同规模的城市,旨在解决发展中地区的数据稀缺问题,并支持基于证据的环境决策制定。