Suppr超能文献

使用 10nm 间隙的共振同轴纳米孔实现纳米颗粒和蛋白质的低功率光阱

Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.

机构信息

Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States.

Department of Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada.

出版信息

Nano Lett. 2018 Jun 13;18(6):3637-3642. doi: 10.1021/acs.nanolett.8b00732. Epub 2018 May 29.

Abstract

We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.

摘要

我们提出了一种使用金膜中具有 10nm 间隙的谐振同轴纳米孔进行光阱的方法。通过原子层光刻技术,在单个芯片上制作了大量的 600 个谐振等离子体同轴纳米孔阱,每个孔都经过调谐以与 785nm 激光源匹配。我们表明,这些单个同轴孔可以作为高效的纳米镊子,具有尖锐的势阱,能够以低至 4.7mW 的激光功率捕获 30nm 的聚苯乙烯纳米颗粒和链霉亲和素分子。此外,通过简单的传输测量,谐振同轴纳米孔能够实时无标记检测捕获事件。我们的制造技术是可扩展和可重复的,因为关键的纳米间隙尺寸由原子层沉积定义。因此,我们的平台具有显著的潜力来推动光学捕获技术的极限。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验