Suppr超能文献

使用 10nm 间隙的共振同轴纳米孔实现纳米颗粒和蛋白质的低功率光阱

Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.

机构信息

Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States.

Department of Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada.

出版信息

Nano Lett. 2018 Jun 13;18(6):3637-3642. doi: 10.1021/acs.nanolett.8b00732. Epub 2018 May 29.

Abstract

We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.

摘要

我们提出了一种使用金膜中具有 10nm 间隙的谐振同轴纳米孔进行光阱的方法。通过原子层光刻技术,在单个芯片上制作了大量的 600 个谐振等离子体同轴纳米孔阱,每个孔都经过调谐以与 785nm 激光源匹配。我们表明,这些单个同轴孔可以作为高效的纳米镊子,具有尖锐的势阱,能够以低至 4.7mW 的激光功率捕获 30nm 的聚苯乙烯纳米颗粒和链霉亲和素分子。此外,通过简单的传输测量,谐振同轴纳米孔能够实时无标记检测捕获事件。我们的制造技术是可扩展和可重复的,因为关键的纳米间隙尺寸由原子层沉积定义。因此,我们的平台具有显著的潜力来推动光学捕获技术的极限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验