Hong Chuchuan, Hong Ikjun, Jiang Yuxi, Ndukaife Justus C
Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA.
Adv Opt Mater. 2024 Apr 24;12(12). doi: 10.1002/adom.202302603. Epub 2024 Feb 8.
This paper showcases an experimental demonstration of near-field optical trapping and dynamic manipulation of an individual extracellular vesicle. This is accomplished through the utilization of a plasmonic dielectric nanoantenna designed to support an optical anapole state-a non-radiating optical state resulting from the destructive interference between electric and toroidal dipoles in the far-field, leading to robust near-field enhancement. To further enhance the field intensity associated with the optical anapole state, a plasmonic mirror is incorporated, thereby boosting trapping capabilities. In addition to demonstrating near-field optical trapping, the study achieves dynamic manipulation of extracellular vesicles by harnessing the thermoelectric effect. This effect is induced in the presence of an ionic surfactant, cetyltrimethylammonium chloride (CTAC), combined with plasmonic heating. Furthermore, the thermoelectric effect improves trapping stability by introducing a wide and deep trapping potential. In summary, our hybrid plasmonic-dielectric trapping platform offers a versatile approach for actively transporting, stably trapping, and dynamically manipulating individual extracellular vesicles.
本文展示了对单个细胞外囊泡进行近场光捕获和动态操纵的实验演示。这是通过利用一种等离子体介电纳米天线来实现的,该天线设计用于支持光学无偶极子状态——一种远场中电偶极子和环形偶极子之间相消干涉产生的非辐射光学状态,从而实现强大的近场增强。为了进一步提高与光学无偶极子状态相关的场强,引入了一个等离子体镜,从而增强了捕获能力。除了展示近场光捕获外,该研究还通过利用热电效应实现了对细胞外囊泡的动态操纵。这种效应是在离子表面活性剂十六烷基三甲基氯化铵(CTAC)与等离子体加热相结合的情况下产生的。此外,热电效应通过引入一个宽而深的捕获势来提高捕获稳定性。总之,我们的混合等离子体 - 介电捕获平台为主动运输、稳定捕获和动态操纵单个细胞外囊泡提供了一种通用方法。