Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
Nano Lett. 2020 May 13;20(5):3388-3395. doi: 10.1021/acs.nanolett.0c00300. Epub 2020 Apr 16.
Plasmonic nanostructures overcome Abbe's diffraction limit to create strong gradient electric fields, enabling efficient optical trapping of nanoparticles. However, it remains challenging to achieve stable trapping with low incident laser intensity. Here, we demonstrate Fano resonance-assisted plasmonic optical tweezers for single nanoparticle trapping in an array of asymmetrical split nanoapertures on a 50 nm gold thin film. A large normalized trap stiffness of 8.65 fN/nm/mW for 20 nm polystyrene particles at a near-resonance trapping wavelength of 930 nm was achieved. The trap stiffness on-resonance is enhanced by a factor of 63 compared to that of off-resonance due to the ultrasmall mode volume, enabling large near-field strengths and a cavity effect contribution. These results facilitate trapping with low incident laser intensity, thereby providing new options for studying transition paths of single molecules such as proteins.
等离子体纳米结构克服了阿贝衍射极限,产生强梯度电场,实现了纳米粒子的高效光学捕获。然而,在低入射激光强度下实现稳定捕获仍然具有挑战性。在这里,我们展示了基于 Fano 共振的等离子体光学镊子,用于在金薄膜上的不对称分裂纳米孔阵列中对单个纳米粒子进行捕获。在近共振捕获波长为 930nm 时,对于 20nm 的聚苯乙烯粒子,实现了大的归一化陷阱刚度为 8.65 fN/nm/mW。与离谐相比,由于超小模式体积,在共振时的陷阱刚度增强了 63 倍,这使得近场强度和腔效应贡献增大。这些结果促进了低入射激光强度下的捕获,从而为研究蛋白质等单分子的转变路径提供了新的选择。