Beckervordersandforth Ruth
Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany.
Brain Plast. 2017 Nov 9;3(1):73-87. doi: 10.3233/BPL-170044.
The life-long generation of new neurons from radial glia-like neural stem cells (NSCs) is achieved through a stereotypic developmental sequence that requires precise regulatory mechanisms to prevent exhaustion or uncontrolled growth of the stem cell pool. Cellular metabolism is the new kid on the block of adult neurogenesis research and the identity of stage-specific metabolic programs and their impact on neurogenesis turns out to be an emerging research topic in the field. Mitochondrial metabolism is best known for energy production but it contains a great deal more. Mitochondria are key players in a variety of cellular processes including ATP synthesis through functional coupling of the electron transport chain and oxidative phosphorylation, recycling of hydrogen carriers, biosynthesis of cellular building blocks, and generation of reactive oxygen species that can modulate signaling pathways in a redox-dependent fashion. In this review, I will discuss recent findings describing stage-specific modulations of mitochondrial metabolism within the adult NSC lineage, emphasizing its importance for NSC self-renewal, proliferation of neural stem and progenitor cells (NSPCs), cell fate decisions, and differentiation and maturation of newborn neurons. I will furthermore summarize the important role of mitochondrial dysfunction in tissue regeneration and ageing, suggesting it as a potential therapeutic target for regenerative medicine practice.
从放射状胶质细胞样神经干细胞(NSCs)终生生成新神经元是通过一个刻板的发育序列实现的,这需要精确的调控机制来防止干细胞池的耗竭或不受控制的生长。细胞代谢是成体神经发生研究领域的新成员,特定阶段代谢程序的特征及其对神经发生的影响成为该领域一个新兴的研究课题。线粒体代谢最广为人知的是能量产生,但它包含的远不止这些。线粒体在多种细胞过程中起关键作用,包括通过电子传递链和氧化磷酸化的功能偶联合成ATP、氢载体的循环利用、细胞结构单元的生物合成以及以氧化还原依赖方式调节信号通路的活性氧的产生。在这篇综述中,我将讨论描述成体NSC谱系中线粒体代谢特定阶段调节的最新发现,强调其对NSC自我更新、神经干细胞和祖细胞(NSPCs)增殖、细胞命运决定以及新生神经元分化和成熟的重要性。我还将总结线粒体功能障碍在组织再生和衰老中的重要作用,表明其作为再生医学实践潜在治疗靶点的可能性。