Suppr超能文献

完全的神经干细胞(NSC)神经元分化需要支链氨基酸诱导的持续代谢转变,以转向能量代谢。

Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism.

机构信息

Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.

Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Verona, Italy.

出版信息

Pharmacol Res. 2020 Aug;158:104863. doi: 10.1016/j.phrs.2020.104863. Epub 2020 May 12.

Abstract

Neural stem cell (NSC) neuronal differentiation requires a metabolic shift towards oxidative phosphorylation. We now show that a branched-chain amino acids-driven, persistent metabolic shift toward energy metabolism is required for full neuronal maturation. We increased energy metabolism of differentiating neurons derived both from murine NSCs and human induced pluripotent stem cells (iPSCs) by supplementing the cell culture medium with a mixture composed of branched-chain amino acids, essential amino acids, TCA cycle precursors and co-factors. We found that treated differentiating neuronal cells with enhanced energy metabolism increased: i) total dendritic length; ii) the mean number of branches and iii) the number and maturation of the dendritic spines. Furthermore, neuronal spines in treated neurons appeared more stable with stubby and mushroom phenotype and with increased expression of molecules involved in synapse formation. Treated neurons modified their mitochondrial dynamics increasing the mitochondrial fusion and, consistently with the increase of cellular ATP content, they activated cellular mTORC1 dependent p70S6 K1 anabolism. Global transcriptomic analysis further revealed that treated neurons induce Nrf2 mediated gene expression. This was correlated with a functional increase in the Reactive Oxygen Species (ROS) scavenging mechanisms. In conclusion, persistent branched-chain amino acids-driven metabolic shift toward energy metabolism enhanced neuronal differentiation and antioxidant defences. These findings offer new opportunities to pharmacologically modulate NSC neuronal differentiation and to develop effective strategies for treating neurodegenerative diseases.

摘要

神经干细胞(NSC)向神经元分化需要向氧化磷酸化转变的代谢转变。我们现在表明,支链氨基酸驱动的、持续的能量代谢向代谢转变对于完全神经元成熟是必需的。我们通过在细胞培养基中补充由支链氨基酸、必需氨基酸、三羧酸循环前体和辅助因子组成的混合物,增加了源自鼠 NSCs 和人诱导多能干细胞(iPSCs)的分化神经元的能量代谢。我们发现,用增强能量代谢处理的分化神经元增加了:i)总树突长度;ii)分支的平均数量和 iii)树突棘的数量和成熟度。此外,处理后的神经元中的神经突看起来更稳定,具有短粗和蘑菇状表型,并且参与突触形成的分子表达增加。处理后的神经元改变了它们的线粒体动力学,增加了线粒体融合,并且与细胞 ATP 含量的增加一致,它们激活了细胞 mTORC1 依赖性 p70S6 K1 合成代谢。全转录组分析进一步表明,处理后的神经元诱导 Nrf2 介导的基因表达。这与活性氧(ROS)清除机制的功能增加相关。总之,持续的支链氨基酸驱动的代谢向能量代谢转变增强了神经元分化和抗氧化防御。这些发现为药理学调节 NSC 神经元分化和开发治疗神经退行性疾病的有效策略提供了新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验