Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland.
Roche Pharmaceutical Research & Early Development, Pre-Clinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland.
Int J Pharm. 2018 Jul 30;546(1-2):137-144. doi: 10.1016/j.ijpharm.2018.05.033. Epub 2018 May 18.
Solubility parameters have been applied extensively in the chemical and pharmaceutical sciences. Particularly attractive is calculation of solubility parameters based on chemical structure and recently, new in silico methods have been proposed. Thus, screening charge densities of molecular surfaces (i.e. so-called σ-profiles) are used by the conductor-like screening model for real solvents (COSMO-RS) and can be employed in a quantitative structure property relationship (QSPR) to predict solubility parameters. In the current study, it was aimed to compare both in silico methods with an experimental dataset of pharmaceutical compounds, which was complemented with own measurements by inverse gas chromatography. An initial evaluation of the total solubility parameters of reference solvents resulted in excellent predictions (observed versus predicted values) with R of 0.855 (COSMO-RS) and 0.945 (QSPR). The subsequent main study of pharmaceutical compounds exhibited R values of 0.701 (COSMO-RS) and 0.717 (QSPR). The comparatively lower prediction was to some extent due to the solid state of pharmaceuticals with known conceptual limitations of the solubility parameter and possible experimental bias. Total solubility parameters were also estimated by classical group contribution methods, which had comparatively lower prediction power. Therefore, the new in silico methods are highly promising for pharmaceutical applications.
溶解度参数在化学和制药科学中得到了广泛的应用。特别吸引人的是基于化学结构计算溶解度参数,最近,新的计算方法已经被提出。因此,分子表面的电荷密度(即所谓的σ-轮廓)被用于真实溶剂的导体相似屏蔽模型(COSMO-RS),并可以用于定量结构性质关系(QSPR)来预测溶解度参数。在本研究中,旨在将这两种计算方法与一个药物化合物的实验数据集进行比较,该数据集由反气相色谱法的补充测量结果补充。参考溶剂的总溶解度参数的初步评估得到了极好的预测(观察值与预测值),COSMO-RS 的 R 值为 0.855,QSPR 的 R 值为 0.945。随后对药物化合物的主要研究表明,COSMO-RS 的 R 值为 0.701,QSPR 的 R 值为 0.717。预测值相对较低的部分原因是药物的固态,已知溶解度参数的概念局限性和可能的实验偏差。总溶解度参数也可以通过经典的基团贡献方法进行估计,其预测能力相对较低。因此,新的计算方法在药物应用中具有很高的应用前景。