Packing and Packaging Materials Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, Egypt, P.O. 12622.
Dairy Science Department, Food Industries and Nutrition Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt.
Carbohydr Polym. 2018 Aug 1;193:19-27. doi: 10.1016/j.carbpol.2018.03.088. Epub 2018 Mar 27.
Bionanocomposites materials open a chance for the usage of novel, high performance, lightweight, and ecofriendly composite materials making them take place the traditional non-biodegradable plastic packaging materials. Biopolymers like polysaccharides such as chitosan (CS), carboxymethyl cellulose (CMC), starch and cellophane could be used to resolve environmental hazards owing to their biodegradability and non-toxicity. In addition these advantages, polysaccharides have some disadvantages for example poor mechanical properties and low resistance to water. Therefore, nanomaterials are used to improve the thermal, mechanical and gas barrier properties without hindering their biodegradable and non-toxic characters. Furthermore, the most favorable nanomaterials are layered silicate nanoclays for example montmorillonite (MMT) and kaolinite, zinc oxide (ZnO-NPs), titanium dioxide (TiO-NPs), and silver nanoparticles (Ag-NPs). In packaging application, the improvement of barrier properties of prepared films against oxygen, carbon dioxide, flavor compounds diffusion through the packaging films. Wide varieties of nanomaterials are suitable to offer smart and/or intelligent properties for food packaging materials, as demonstrated by oxygen scavenging capability, antimicrobial activity, and sign of the level of exposure to various harmful features for instance oxygen levels or insufficient temperatures. The compatibility between nanomaterials and polymers matrix consider the most challenge for the preparation of bionanocomposites as well as getting whole distribution of nanoparticles into the polymer matrix. We keen in this review the development of packaging materials performance and their mechanical, degradability and thermal stability as well as antibacterial activity for utilization of bionanocomposites in different packaging application is considered.
生物纳米复合材料为新型高性能、轻量级和环保型复合材料的应用提供了机会,使它们替代传统的不可生物降解的塑料包装材料。壳聚糖(CS)、羧甲基纤维素(CMC)、淀粉和纤维素等生物聚合物由于其可生物降解性和无毒特性,可用于解决环境危害问题。此外,这些优点,多糖具有一些缺点,例如机械性能差和耐水性低。因此,纳米材料被用于改善热、机械和气体阻隔性能,而不会阻碍其可生物降解和无毒的特性。此外,最有利的纳米材料是层状硅酸盐纳米粘土,例如蒙脱土(MMT)和高岭土、氧化锌纳米粒子(ZnO-NPs)、二氧化钛纳米粒子(TiO-NPs)和银纳米粒子(Ag-NPs)。在包装应用中,通过包装薄膜提高了制备薄膜对氧气、二氧化碳、风味化合物扩散的阻隔性能。各种纳米材料都适合为食品包装材料提供智能和/或智能特性,如吸氧能力、抗菌活性以及对各种有害特性(如氧气水平或温度不足)暴露程度的指示。纳米材料与聚合物基体的相容性是制备生物纳米复合材料的最大挑战之一,也是将纳米粒子完全分散到聚合物基体中的关键。我们热衷于在本综述中研究包装材料性能及其机械性能、降解性和热稳定性以及抗菌活性的发展,以考虑在不同包装应用中利用生物纳米复合材料。