Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany.
Lamont-Doherty Earth Observatory, Columbia University, New York, NY, USA.
Nat Commun. 2023 Apr 13;14(1):2120. doi: 10.1038/s41467-023-37766-5.
Ice-rich Pleistocene-age permafrost is particularly vulnerable to rapid thaw, which may quickly expose a large pool of sedimentary organic matter (OM) to microbial degradation and lead to emissions of climate-sensitive greenhouse gases. Protective physico-chemical mechanisms may, however, restrict microbial accessibility and reduce OM decomposition; mechanisms that may be influenced by changing environmental conditions during sediment deposition. Here we study different OM fractions in Siberian permafrost deposited during colder and warmer periods of the past 55,000 years. Among known stabilization mechanisms, the occlusion of OM in aggregates is of minor importance, while 33-74% of the organic carbon is associated with small, <6.3 µm mineral particles. Preservation of carbon in mineral-associated OM is enhanced by reactive iron minerals particularly during cold and dry climate, reflected by low microbial CO production in incubation experiments. Warmer and wetter conditions reduce OM stabilization, shown by more decomposed mineral-associated OM and up to 30% higher CO production. This shows that considering the stability and bioavailability of Pleistocene-age permafrost carbon is important for predicting future climate-carbon feedback.
富含冰的更新世永久冻土特别容易快速融化,这可能会迅速暴露大量沉积有机质 (OM),使其容易受到微生物降解,并导致对气候敏感的温室气体排放。然而,保护物理化学机制可能会限制微生物的可及性并减少 OM 分解;这些机制可能会受到沉积过程中环境条件变化的影响。在这里,我们研究了过去 55000 年来在西伯利亚永久冻土中沉积的不同 OM 馏分。在已知的稳定化机制中,OM 在团聚体中的包裹作用不太重要,而 33-74%的有机碳与<6.3µm 的小矿物颗粒有关。在寒冷和干燥的气候条件下,反应性铁矿物特别增强了与矿物相关的 OM 中碳的保存,这反映在孵育实验中微生物 CO 产量较低。较温暖和潮湿的条件会降低 OM 的稳定性,表现为更多分解的与矿物相关的 OM 和高达 30%更高的 CO 产量。这表明,考虑到更新世永久冻土碳的稳定性和生物可利用性对于预测未来的气候-碳反馈非常重要。