Suppr超能文献

利用遥感数据和机器学习对登革热媒介种群进行建模。

Modeling Dengue vector population using remotely sensed data and machine learning.

作者信息

Scavuzzo Juan M, Trucco Francisco, Espinosa Manuel, Tauro Carolina B, Abril Marcelo, Scavuzzo Carlos M, Frery Alejandro C

机构信息

Facultad de Maremática, Atronomía, Física y Computación, Universidad Nacional de Córdoba, Argentina.

Fundación Mundo Sano, Buenos Aires, Argentina.

出版信息

Acta Trop. 2018 Sep;185:167-175. doi: 10.1016/j.actatropica.2018.05.003. Epub 2018 May 16.

Abstract

Mosquitoes are vectors of many human diseases. In particular, Aedes ægypti (Linnaeus) is the main vector for Chikungunya, Dengue, and Zika viruses in Latin America and it represents a global threat. Public health policies that aim at combating this vector require dependable and timely information, which is usually expensive to obtain with field campaigns. For this reason, several efforts have been done to use remote sensing due to its reduced cost. The present work includes the temporal modeling of the oviposition activity (measured weekly on 50 ovitraps in a north Argentinean city) of Aedes ægypti (Linnaeus), based on time series of data extracted from operational earth observation satellite images. We use are NDVI, NDWI, LST night, LST day and TRMM-GPM rain from 2012 to 2016 as predictive variables. In contrast to previous works which use linear models, we employ Machine Learning techniques using completely accessible open source toolkits. These models have the advantages of being non-parametric and capable of describing nonlinear relationships between variables. Specifically, in addition to two linear approaches, we assess a support vector machine, an artificial neural networks, a K-nearest neighbors and a decision tree regressor. Considerations are made on parameter tuning and the validation and training approach. The results are compared to linear models used in previous works with similar data sets for generating temporal predictive models. These new tools perform better than linear approaches, in particular nearest neighbor regression (KNNR) performs the best. These results provide better alternatives to be implemented operatively on the Argentine geospatial risk system that is running since 2012.

摘要

蚊子是多种人类疾病的传播媒介。特别是埃及伊蚊(林奈)是拉丁美洲基孔肯雅热、登革热和寨卡病毒的主要传播媒介,构成全球威胁。旨在对抗这种传播媒介的公共卫生政策需要可靠且及时的信息,而通过实地调查获取此类信息通常成本高昂。因此,由于成本较低,人们已多次尝试使用遥感技术。本研究基于从地球观测业务卫星图像中提取的数据时间序列,对埃及伊蚊(林奈)在阿根廷北部一个城市50个诱蚊产卵器上每周测量的产卵活动进行时间建模。我们将2012年至2016年的归一化植被指数(NDVI)、归一化水指数(NDWI)、夜间陆地表面温度(LST night)、白天陆地表面温度(LST day)和热带降雨测量任务-全球降水测量(TRMM-GPM)降雨量用作预测变量。与之前使用线性模型的研究不同,我们采用完全开源的工具包运用机器学习技术。这些模型具有非参数性的优点,能够描述变量之间的非线性关系。具体而言,除了两种线性方法外我们还评估了支持向量机、人工神经网络、K近邻算法和决策树回归模型。对参数调整以及验证和训练方法进行了考量。将结果与之前使用类似数据集生成时间预测模型的线性模型进行比较。这些新工具的表现优于线性方法,特别是最近邻回归(KNNR)表现最佳。这些结果为自2012年以来运行的阿根廷地理空间风险系统提供了更好的可实际操作的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验