Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
Curr Biol. 2018 Jun 4;28(11):1783-1793.e4. doi: 10.1016/j.cub.2018.04.040. Epub 2018 May 17.
Memory consolidation is a crucial step for long-term memory (LTM) storage. However, we still lack a clear picture of how memory consolidation is regulated at the neuronal circuit level. Here, we took advantage of the well-described anatomy of the Drosophila olfactory memory center, the mushroom body (MB), to address this question in the context of appetitive LTM. The MB lobes, which are made by the fascicled axons of the MB intrinsic neurons, are organized into discrete anatomical modules, each covered by the terminals of a defined type of dopaminergic neuron (DAN) and the dendrites of a corresponding type of MB output neuron (MBON). We previously revealed the essential role of one DAN, the MP1 neuron, in the formation of appetitive LTM. The MP1 neuron is anatomically matched to the GABAergic MBON MVP2, which has been attributed feedforward inhibitory functions recently. Here, we used behavior experiments and in vivo imaging to challenge the existence of MP1-MVP2 synapses and investigate their role in appetitive LTM consolidation. We show that MP1 and MVP2 neurons form an anatomically and functionally recurrent circuit, which features a feedback inhibition that regulates consolidation of appetitive memory. This circuit involves two opposite type 1 and type 2 dopamine receptors in MVP2 neurons and the metabotropic GABA-R1 receptor in MP1 neurons. We propose that this dual-receptor feedback supports a bidirectional self-regulation of MP1 input to the MB. This mechanism displays striking similarities with the mammalian reward system, in which modulation of the dopaminergic signal is primarily assigned to inhibitory neurons.
记忆巩固是长期记忆(LTM)存储的关键步骤。然而,我们仍然缺乏对神经元回路水平如何调节记忆巩固的清晰认识。在这里,我们利用果蝇嗅觉记忆中心蘑菇体(MB)的描述良好的解剖结构,在食欲性 LTM 背景下解决这个问题。MB 叶由 MB 内在神经元的束状轴突组成,组织成离散的解剖模块,每个模块由特定类型的多巴胺能神经元(DAN)的末端和相应类型的 MB 输出神经元(MBON)的树突覆盖。我们之前揭示了一种 DAN,即 MP1 神经元,在食欲性 LTM 的形成中的重要作用。MP1 神经元在解剖学上与 GABA 能的 MBON MVP2 匹配,最近被认为具有前馈抑制功能。在这里,我们使用行为实验和体内成像来挑战 MP1-MVP2 突触的存在,并研究它们在食欲性 LTM 巩固中的作用。我们表明,MP1 和 MVP2 神经元形成一个解剖学和功能上的递归回路,其特征是反馈抑制,调节食欲性记忆的巩固。该回路涉及 MVP2 神经元中的两种相反类型 1 和 2 多巴胺受体和 MP1 神经元中的代谢型 GABA-R1 受体。我们提出,这种双受体反馈支持 MP1 输入到 MB 的双向自我调节。这种机制与哺乳动物奖励系统显示出惊人的相似性,其中多巴胺能信号的调制主要分配给抑制性神经元。