Suppr超能文献

大振幅振荡剪切(LAOS)下人类声带组织的非线性粘弹性表征

Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS).

作者信息

Chan Roger W

机构信息

Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.

出版信息

J Rheol (N Y N Y). 2018 May;62(3):695-712. doi: 10.1122/1.4996320. Epub 2018 Apr 1.

Abstract

Viscoelastic shear properties of human vocal fold tissues were previously quantified by the shear moduli ( and ). Yet these small-strain linear measures were unable to describe any nonlinear tissue behavior. This study attempted to characterize the nonlinear viscoelastic response of the vocal fold lamina propria under large-amplitude oscillatory shear (LAOS) with a stress decomposition approach. Human vocal fold cover and vocal ligament specimens from eight subjects were subjected to LAOS rheometric testing with a simple-shear rheometer. The empirical total stress response was decomposed into elastic and viscous stress components, based on odd-integer harmonic decomposition approach with Fourier transform. Nonlinear viscoelastic measures derived from the decomposition were plotted in Pipkin space and as rheological fingerprints to observe the onset of nonlinearity and the type of nonlinear behavior. Results showed that both the vocal fold cover and the vocal ligament experienced intercycle strain softening, intracycle strain stiffening, as well as shear thinning both intercycle and intracycle. The vocal ligament appeared to demonstrate an earlier onset of nonlinearity at phonatory frequencies, and higher sensitivity to changes in frequency and strain. In summary, the stress decomposition approach provided much better insights into the nonlinear viscoelastic behavior of the vocal fold lamina propria than the traditional linear measures.

摘要

人类声带组织的粘弹性剪切特性先前已通过剪切模量(和)进行了量化。然而,这些小应变线性测量方法无法描述任何非线性组织行为。本研究试图采用应力分解方法,表征声带固有层在大振幅振荡剪切(LAOS)下的非线性粘弹性响应。使用简单剪切流变仪对来自8名受试者的人类声带覆盖层和声带韧带标本进行LAOS流变测试。基于傅里叶变换的奇整数谐波分解方法,将经验总应力响应分解为弹性应力分量和粘性应力分量。从分解中得出的非线性粘弹性测量值绘制在皮普金空间中,并作为流变指纹,以观察非线性的起始和非线性行为的类型。结果表明,声带覆盖层和声带韧带均经历了周期间应变软化、周期内应变硬化,以及周期间和周期内的剪切变稀。声带韧带在发声频率下似乎表现出更早的非线性起始,并且对频率和应变变化具有更高的敏感性。总之,与传统的线性测量方法相比,应力分解方法能更好地洞察声带固有层的非线性粘弹性行为。

相似文献

1
Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS).
J Rheol (N Y N Y). 2018 May;62(3):695-712. doi: 10.1122/1.4996320. Epub 2018 Apr 1.
3
Rheometric properties of canine vocal fold tissues: variation with anatomic location.
Auris Nasus Larynx. 2011 Jun;38(3):367-72. doi: 10.1016/j.anl.2010.09.006. Epub 2010 Oct 28.
4
Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.
Laryngoscope. 2018 Aug;128(8):E296-E301. doi: 10.1002/lary.27049. Epub 2017 Dec 15.
5
Ovine Vocal Fold Tissue Fatigue Response to Accumulated, Large-Amplitude Vibration Exposure at Phonatory Frequencies.
J Speech Lang Hear Res. 2019 Nov 26;62(12):4291-4299. doi: 10.1044/2019_JSLHR-S-19-0181. Print 2019 Dec 18.
6
7
Nonlinear viscoelastic properties of native male human skin and in vitro 3D reconstructed skin models under LAOS stress.
J Mech Behav Biomed Mater. 2019 Aug;96:310-323. doi: 10.1016/j.jmbbm.2019.04.032. Epub 2019 Apr 17.
8
Large amplitude oscillatory shear study of a colloidal gel near the critical state.
J Chem Phys. 2023 Feb 7;158(5):054907. doi: 10.1063/5.0129416.
9
Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS).
Carbohydr Polym. 2016 Nov 20;153:312-319. doi: 10.1016/j.carbpol.2016.07.095. Epub 2016 Jul 22.
10

引用本文的文献

1
Synthetic, self-oscillating vocal fold models for voice production researcha).
J Acoust Soc Am. 2024 Aug 1;156(2):1283-1308. doi: 10.1121/10.0028267.
2
3
Linear and nonlinear rheology of liberase-treated breast cancer tumors.
Biomater Sci. 2023 Mar 14;11(6):2186-2199. doi: 10.1039/d3bm00038a.
4
In Vitro Evaluation of Biomaterials for Vocal Fold Injection: A Systematic Review.
Polymers (Basel). 2021 Aug 6;13(16):2619. doi: 10.3390/polym13162619.
5
Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique.
Sensors (Basel). 2021 Apr 21;21(9):2923. doi: 10.3390/s21092923.
6
Nonlinear rheological characteristics of single species bacterial biofilms.
NPJ Biofilms Microbiomes. 2020 Apr 14;6(1):19. doi: 10.1038/s41522-020-0126-1.
7
Ovine Vocal Fold Tissue Fatigue Response to Accumulated, Large-Amplitude Vibration Exposure at Phonatory Frequencies.
J Speech Lang Hear Res. 2019 Nov 26;62(12):4291-4299. doi: 10.1044/2019_JSLHR-S-19-0181. Print 2019 Dec 18.

本文引用的文献

1
Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration.
Biomaterials. 2016 Nov;108:91-110. doi: 10.1016/j.biomaterials.2016.08.054. Epub 2016 Sep 2.
2
Functional assessment of the ex vivo vocal folds through biomechanical testing: A review.
Mater Sci Eng C Mater Biol Appl. 2016 Jul 1;64:444-453. doi: 10.1016/j.msec.2016.04.018. Epub 2016 Apr 8.
3
Viscoelasticity of hyaluronic acid-gelatin hydrogels for vocal fold tissue engineering.
J Biomed Mater Res B Appl Biomater. 2016 Feb;104(2):283-90. doi: 10.1002/jbm.b.33358. Epub 2015 Feb 27.
4
Electrospun fiber constructs for vocal fold tissue engineering: effects of alignment and elastomeric polypeptide coating.
Acta Biomater. 2015 Feb;13:111-20. doi: 10.1016/j.actbio.2014.10.039. Epub 2014 Nov 4.
5
Collagen microstructure in the vocal ligament: initial results on the potential effects of smoking.
Laryngoscope. 2014 Sep;124(9):E361-7. doi: 10.1002/lary.24626. Epub 2014 Mar 24.
6
Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria.
Biomech Model Mechanobiol. 2013 Jun;12(3):555-67. doi: 10.1007/s10237-012-0425-4. Epub 2012 Aug 11.
7
Insights into the role of elastin in vocal fold health and disease.
J Voice. 2012 May;26(3):269-75. doi: 10.1016/j.jvoice.2011.05.003. Epub 2011 Jun 25.
8
Collagen type I, collagen type III, and versican in vocal fold lamina propria.
Arch Otolaryngol Head Neck Surg. 2011 Jun;137(6):604-8. doi: 10.1001/archoto.2011.88.
9
Nonlinear viscoelastic biomaterials: meaningful characterization and engineering inspiration.
Integr Comp Biol. 2009 Jul;49(1):40-50. doi: 10.1093/icb/icp010. Epub 2009 Jun 3.
10
Microstructure of the vocal fold in elderly humans.
Clin Anat. 2011 Jul;24(5):544-51. doi: 10.1002/ca.21114. Epub 2011 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验