Suppr超能文献

一种具有高密度微电极阵列的集成生物传感器系统,用于实时电化学成像。

An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging.

出版信息

IEEE Trans Biomed Circuits Syst. 2020 Feb;14(1):20-35. doi: 10.1109/TBCAS.2019.2953579. Epub 2019 Nov 15.

Abstract

Electrochemical methods have been shown to be advantageous to life sciences by supporting studies and discoveries in metabolism activities, DNA analysis, and neurotransmitter signaling. Meanwhile, the integration of Microelectrode Array (MEA) and the accessibility of CMOS technology permit high-density electrochemical sensing method. This paper describes an electrochemical imaging system equipped with a custom CMOS microchip. The microchip holds a 3.6 mm × 3.6 mm sensing area containing 16,064 Pt MEA, the associated 16,064 integrated read channels, and digital control circuits. The novel three-electrode system geometry with a 27.5 μm spatial pitch enables cellular level chemical gradient imaging of bio-samples. The noise level of the on-chip read channel array allows amperometric detection of neurotransmitters such as norepinephrine (NE) with concentrations from 4 μM to 512 μM with 4.7 pA/μM sensitivity (R = 0.98). Electrochemical response to dissolved oxygen (DO) concentration was also characterized by deoxygenated deionized water containing 5% to 80% of the ambient oxygen concentrations with 86 pA/mg/L sensitivity (R = 0.89). The system also demonstrated selectivity to different target analytes using cyclic voltammetry method to simultaneously detect NE and uric acid. Also, a custom indium tin oxide with deposited Au glass electrode was integrated into the microfluidic system to enable pH measurement, ensuring the viability of bio-samples during experiments. Electrochemical images confirm the spatiotemporal performance at four frames per second while maintaining the sensitivity to target analytes. Finally, the overall system is controlled and continuously monitored by a MATLAB-based custom user interface, which is optimized for real-time high spatiotemporal resolution chemical imaging.

摘要

电化学方法在支持代谢活动、DNA 分析和神经递质信号等方面的研究和发现方面显示出对生命科学的优势。同时,微电极阵列 (MEA) 的集成和 CMOS 技术的可及性允许高密度电化学传感方法。本文描述了一种配备定制 CMOS 微芯片的电化学成像系统。微芯片包含一个 3.6mm×3.6mm 的传感区域,其中包含 16064 个 Pt MEA、相关的 16064 个集成读取通道和数字控制电路。具有 27.5μm 空间间距的新颖三电极系统几何形状能够对生物样本进行细胞水平的化学梯度成像。片上读取通道阵列的噪声水平允许对神经递质(如去甲肾上腺素 (NE))进行安培检测,其浓度范围为 4μM 至 512μM,灵敏度为 4.7pA/μM(R=0.98)。通过用 5%至 80%的环境氧气浓度的脱氧去离子水来表征对溶解氧 (DO) 浓度的电化学响应,灵敏度为 86pA/mg/L(R=0.89)。该系统还通过使用循环伏安法同时检测 NE 和尿酸来展示对不同目标分析物的选择性。此外,还将沉积有 Au 的定制氧化铟锡玻璃电极集成到微流控系统中,以实现 pH 值测量,从而确保实验过程中生物样本的活力。电化学图像证实了每秒四帧的时空性能,同时保持对目标分析物的灵敏度。最后,整个系统由基于 MATLAB 的定制用户界面控制和连续监测,该界面针对实时高时空分辨率化学成像进行了优化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验