Suppr超能文献

具有丰富Pd-O-Sn界面的分级Pd/SnO纳米片上二氧化碳电化学还原制甲醇

Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO Nanosheets with Abundant Pd-O-Sn Interfaces.

作者信息

Zhang Wuyong, Qin Qing, Dai Lei, Qin Ruixuan, Zhao Xiaojing, Chen Xumao, Ou Daohui, Chen Jie, Chuong Tracy T, Wu Binghui, Zheng Nanfeng

机构信息

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of, Chemistry for Energy Materials, National &, Local Joint Engineering Research Center of, Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China.

出版信息

Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9475-9479. doi: 10.1002/anie.201804142. Epub 2018 Jun 28.

Abstract

Electrochemical conversion of CO into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO structure, ultrathin Pd nanosheets partially capped by SnO nanoparticles, is designed to enable multi-electron transfer for selective electroreduction of CO into CH OH. Such a structure design not only enhances the adsorption of CO on SnO , but also weakens the binding strength of CO on Pd due to the as-built Pd-O-Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal-based catalysts by creating metal oxide interfaces for selective electroreduction of CO .

摘要

利用可再生能源产生的电力将二氧化碳电化学转化为燃料,有助于构建人工碳循环。然而,低效率和差稳定性阻碍了大多数传统电催化剂的实际应用。在这项工作中,设计了一种二维分级Pd/SnO结构,即由SnO纳米颗粒部分覆盖的超薄Pd纳米片,以实现多电子转移,将二氧化碳选择性电还原为甲醇。这种结构设计不仅增强了二氧化碳在SnO上的吸附,还由于所形成的Pd-O-Sn界面削弱了二氧化碳在Pd上的结合强度,这被证明对提高Pd催化剂的电催化选择性和稳定性至关重要。这项工作提供了一种新策略,通过创建金属氧化物界面来提高金属基催化剂对二氧化碳选择性电还原的电化学性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验